MARCH 1980

VERSION 1.0

Copyright P.J.R. Boyle 1980.

PREFACE

Apex is a powerful and general operating system. The ways in
which it can be used are almost infinite. You will need some
patience at first since Apex is not a simple application program
which can lead you by the hand. In some configurations Apex will
be used with a high level language such as XPLO, which will hide
the messy details of Apex for you. However the basic Apex
package is intended for assembly language programmers and that
is the focus of this document.

Any documentation of such a system must ne cessarily be rather
terse and self referent. This manual supplies the essential
information you will need to use Apex. A lot of this information
is mnot critical when Apex is used in the simplest way but is
essential for more complex operations. Thus this manual will
need several readings. First to get the overview, then to get
the basic information you need to begin to use Apex and, later,
to extract the detail you need for some specific task.

Eventually you will need to read and understand the 1listings
provided with this manual in order to use the full potential of
Apex. Note that these listings are supplied for pedagogic
purposes only. The specific code you recieve with Apex may be a
later revision or may be for a different system configuration.
The principles will remain however.

CONTENTS

INTRODUCTION. c cccveeeeesccecanccscsccnsaancscsscaccsoscncoccness
BOOTING APEX. . cceeeeenocencenccoscssasassoccasosonsocsncenses
Booting on non-standard SyStemS...eesecesensssonocss
" DISK ORGANIZATION. cc.eeeeoeoconcsoncssncsassoccncsoscacosconsces
Write locking disksS.eeiverieiereeneenernnoseennnnons
Unit allocations...... ceeenn ceeees ceestessscccne N
UNIT ORGANTIZATION. . e eeveceeeeoeosnancsacscasoceoossoanscsaces
System unitS.eeeeeseseas ceteessseens ceeecsssesesenn
FORMATTING DISKS...cccetecaan cesecccccansececsscssassccssnnna
FILES IN APEX .. ceteneeeceoesoenceoscacconasanosoocasosnoscsansaes
Types of files...ov.... ceecsssaanses ceessreureccnn .
File sSpecificationsS.esseeseesesesseeeeeeneennssnses
Illegal file names..... teseseseraens sees e ensana .
Standard extensionsS...eesseceenncaas ceeeeseenaecens
Using fileS..uoeuueiiineeerenennsecnanas B N ¢
Opening and closing files..viererieneeeeernneneneasll
Backup files......v.onn. ceeses ceaesaen ceeeans eeesall
System files..... e T eeereeeeen e B 4
DEFAULT S . e ceeeeeeeaeeeeeaceoessencsesasascoacsancessancnssel3l
General default structure........ crerecseasss I
SWAPPING. ¢ o ceteeeienncecsecaacosocanssnanancccaosossancasenssalb
When you swap and when you don " tesiieneeeeeeeeeeeaaalb
Running without swapping...ceeeeeeeesrneeceens ceeeal?

OCWOWooRNNINN LU

DATES .. cieeneeeeeeooneeoceaccseacssncsasassscsssonsaccannasssall
2
APEX SYNTAX...ceeeeeecsccan A 0
SWITCHES IN APEX.....ccnce.. cteccecececcaarssccsscacnnen .ee.21
Command line switchesS..eeeeeiireeeneoonenoneneess .. 21
System wide switches...... ceeeess e ceecer e ce021
Save file switches...... Ceerecesanen D |
MEMORY USE....cceeeecrecroorencceossccsascsnsccnoscnnocesssl3
Other memory uSe€......... ceeeen vessos ceeecessases .24
DEVICE HANDLERS...cecoccacnss A)
Handler entry points....ieeeeeesonn. ceesecsesenacesdlb
Accessing device handlers..... B
Inserting device handlers...eceeerisnnnenanssnnceoeeel?
Standard device handlersS..ceeeeertstenvsncenceoeeeesll
THE CONSOLE DEVICE....ccctiecennececsrsansscsascccecncncocnsald
APEX SYSTEM PAGE.....c.ciereerecansoncsaccaceascannccnosessll
Start and exit vectors......... 2 !
Saved image parameters....... tee ettt essennsanena 32
Program space parameterS.c.eeeeececessosnessoceseneel

I2L parameters....... cesesan cees

Buffers.eeeeeneniienennncnennns
Other program specific globals.

Input and output file parameters..... ceeeecne

Unit driver information block..
Device handler table....vieeven.
Other system dependant globals.
APEX RESIDENT SYSTEM VECTORS.cccccecee.
Apex entry points...iieeeecesns
Apex resident system functions.
COMMANDS cteeeeescncncsssccccncncccns
Runm.ieeeeeieieneneeennennens ceeee
VA o o cheeses e e s e
MaKke.soeeooeoonnos ce s e e e nee e
DirectOryeeeeeececeans ceeeenne .
Delete.eeeesesennoennns s
Save.ceeosaoaas s e e e enan c et e
Openeeeeeenn. ceesnssas chenrenas
Initialize.ceeseeieneneennocsas
Starteeceeceesceesas ce s e e
SWaAP ettt eeerenenennnerens creoe
Getuooooon s e s e s e e s et seaae .

Dfile.eiieeeeeetconeaneens ce e e
No and DOeeeeeee et e e e e e ceas

Dateeeeeeesecencnna er e e s e o e e

Bdir.eeeoeeeeesenoeennns cees e .
System......... ceecseesensanaas .
SiZ@eeereeeeeesnnnnnnnns s ee s enn
Newe.ooeeeeooosoannns e s e s et asena

APEX STANDARD UTILITIES.....ccceeecccss

Dupdsk..... ceeesneacanesn e oo
COMMAND SUMMARY....ccccceccccccencacacs

¢ e v 00 0 0000 e

00 000000000

e e 0 00 0000000

© ¢ o 0 0 000 000 s

L I I Y

¢ o0 0000000000

..... oo 00 000
s e 0 e s 0 0o .
..... ¢ o oo
e s e e e e s e e s e

oooooo - .« e 0
* o0 s e Ly * 0 0 0
e e s 0 . . LY

e o . LY LY
LI S Ly LY
e e e s 0 e e a e LY

oooooo .. ¢ s o0
------ LIS .
ooooo LIS LY

P V)
... b4
co bb

eeob5
«..46
... 46
«..46

cee 47

Y
-
«..48
«..48

eee50
.++50
...50
«e0 51
«..51
«..51
... 51

ceee52

..53

PAGE 1

INTRODUCTION

Welcome to Apex. You now have at your disposal an entirely new
organization of your Apple II which will make many new things
possible. Apex will make your Apple perform in ways which you
have previously only found in much larger machines. Best of all,
Apex will do this without tying up large chunks of memory,
without limiting the things vyou can do with your Apple, and
without a continual machine-time overhead. '

Apex is a programmer” s operating system. It is designed to
provide a powerful program development environment while
retaining a general purpose overall structure that will be
compatible with most specific application tasks.

Apex has a multi-level structure. Some of Apex is always in
memory while other parts of it will share memory with your
program in the same way some large machines implement "virtual”
memory; that is by swapping portions of memory to and from the
system disk.

Apex has been designed for simple program interface. In
principle no program need know anything about Apex unless it
wants to use Apex facilities. In this way, almost any program
may be run under Apex. The exception, of course, is a program
that was written to use the facilities of some other operating
system, such as Apple DOS.

The most fundamental service Apex provides is the organization
and maintenance of your disk space. It does this by partitioning

the disk space into "units” and "files".

Units are large, fixed areas of disk storage space which are
allocated in part in correspondence with external constraints,
and in part in accordance with convenience factors. On small

systems, a unit will typically correspond to a physical floppy
disk.

Files, on the other hand, are sections of a unit which are
variable in size and have names. Apex provides you and your

programs with access to files by name and to wunits by their
number.

PAGE 2

Another major service Apex provides is a modular and global
mechanism for accessing your peripheral devices, such as
terminals, printers etc. Apex contains a set of modular programs
called device "handlers”. Each device has a handler, which is
the only piece of code which needs to know about the specific
details of the device. This means that programs under Apex need
not know about the specific details of the printer you have etc.
Normally your standard version of Apex will contain handlers for
your periﬂbral devices as well as for the Apple keyboard and
screen (together known as the "console"” device), and for the
disks you have.

A word about languages is in order here. Unlike Apple DOS or
Apple Pascal, Apex is not imbedded into any one langauge.
Instead, it provides a general overall structure into which any
language can be placed. This has the important advantage that
you don”t have to re-—learn your machine every time you change
languages. The root language of Apex is, of course, Assembly
language. Other 1languages have been implemented under Apex,
notably XPLO and FOCAL. They are probably available from the
same source you obtained Apex. Apple”s BASICs can be run under
Apex if you insist, but of course those functions which are DOS
related will not work. UCSD Pascal is its own operating system
and will not run under anything.

In every software project there are certain design decisions
which must be made. In Apex some of these decisions have been
made differently from most other operating systems. Loosely
speaking, the reason for this is that Apex has a different
focus, and so the priorities come out different.

For one thing Apex uses contiguous files. That is, files on an
Apex disk reside in sequential block numbers. This makes
multi-block disk transfers much faster. Apex can load a program
into memory, or a source file into an editor, at speeds that are
impossible with the 1linked block structure used in Apple DOS.
The cost is that in Apex files must be competely re-written when
they are modified. Copying a file when you modify it is a good
idea anyway, since this makes the process non-fatal in case of
disk errors.

For another thing, Apex has a very small resident portion. The
fundamental advantage of this is obvious: You have more user
memory. An un-obvious advantage of this arrangement is that,
since the basic structure of Apex does not define the run-time
environment, Apex can support almost any type of task. It is

PAGE 3

possible to build a foreground-background, real-time or
data-base management environment for your programs within the
same basic structure. The penalty is that the run—-time code your
programs need does not come as a basic part of Apex. It must be
loaded with each program, either as a separate system module, or
as a part of the program itself.

Another tradeoff exists in the area of ease of learning versus
the amount of typing you have tu do. Apex is intentionally
cryptic on input and verbose on output. This can a little
confusing at first, but soon you will become very familiar with
it, and the cryptic input will greatly speed your work.

A related matter is the issue of protections. In Apex many
protections are built in, such as backup files, backup direc-
tories, read-after-write options, and volume number checks.
However you are the boss, and its your system, so Apex will
allow you to do anything if you insist, no matter how fatal the
operation may appear to be.

PAGE 4

BOOTING APEX

If you have a standard Apple II or Apple II+ with a standard
Apple TII mini disk drive, the Apex system disk you received with
this package should boot, in the same way DOS boots, on the disk
you have connected as drive 1 on slot 6.

The first things you will want to do upon booting Apex for the
first time are:
1) Study this manual until you have a good idea of what
Apex is and how it works. Otherwise there is no
chance that you will succeed in using it.
2) "Permit" your disk drives - see the section on unit
allocations, and the BOOTER utility.
3) Make some working disks from the master disk. You
will use the MAKER and DUPDSK, EXCH or COPY
utilities.

BOOTING ON NON-STANDARD SYSTEMS

The bootstrap on the standard master system disk assumes that
the standard Apple bootstrap procedure will work on your
machine. It may not if you have a different bootstrap ROM on
your disk controller (such as if you have the language card) or
if you have a different type of disk drive. In this case you
need a special bootstrap. If one is not available you must boot
the other disk you received, which is an almost standard Apple
DOS disk. On this disk you will find a "binary"” file called
APEXBOOT. You must contrive a method to BRUN this file. It loads
into memory at address $3000 and is $800 bytes long.

When APEXBOOT is started it prompts you for an Apex disk and
loads Apex from that disk. APEXBOOT does not itself contain
any of the code for Apex. It reads this information from the
Apex system disk in the same way that the normal bootstrap
process would have read it. In this way the Apex bootstrap
maintenance programs still apply.

PAGE 5

DISK ORGANIZATION

The track, sector, slot, and drive organization of normal Apple
disks is not used in Apex because it is not general enough.

Instead, disk storage is organized into blocks, files and units.
These are translated into the appropriate physical entities, for
the specific disk drive in question, by the disk "driver"” within
the Apex resident code. The standard Apex system has a driver
which supports the standard Apple 5" disks as well as 8" single
density disks wusing a controller made by Sorrento Valley

Associates. Drivers for other disks can replace the standard
driver.

All of your disk space is ultimately organized into blocks of
256 bytes each. A unit is manipulated as a fixed sequence of
applicable block numbers. Block numbers begin at zero and go up
in sequence to the size of the unit minus one.

WRITE LOCKING DISKS

Apex 1is continually accessing the disks. Thus, write—locking
disks will stop you from doing almost anything. However, it is
possible to run, read, or copy files from a write—locked disk.

UNIT ALLOCATIONS

In the standard Apex configuration, there are eight possible
units, numbered O through 7. These units are assigned to
physical disks through tables in the disk driver code. There is
a default setting of these tables that exists in the driver as
distributed. The resulting assignments are listed in the table
below. In addition to the disk driver tables, there is a
"permit"” byte in the system page which tells Apex which units
are extant on the current system. If the standard setting of the
tables includes the drives you have, then all that is neccessary
in order to enable or disable your drives, is to change the
permit byte at $BF51. When you change this byte, or the driver
tables, you can make the change permanent with the program
BOOTER. In the permit byte, each bit corresponds to a possible
unit. Bit O, the least significant bit, enables unit 0, bit 1
enables unit 1 etc.

Note that
which the
to which
accessing

unit O has a special significance.
distributed Apex disk will boot.
if an error

Apex will

return

the current system unit.

PAGE 6

It is the unit on

It is also the unit

should

occur while

NNNNUUEOY S

DRIVE#

LN =N N

PERMIT BIT#

Nouvm b= O

SVA 8"
SvVA 8"
SVA 8"

STANDARD UNIT ASSIGNMENT TABLE

disk II
disk II
disk II
disk II
disk.
disk.
disk.
disk.

PAGE 7

UNIT ORGANIZATION

A unit has some blocks (0-8) reserved for bootup code etc.
"Following these blocks is a unit directory (9-12) which
describes the files on the unit. On most units, a backup
directory follows the main directory (13-16). The rest of the
unit (17-) is available for file storage. A bootable disk
requires that the first few blocks of file space (17-25) contain
resident code in a special system file.

A standard Apple mini-disk has 455 blocks on it of which 438 are
available for files.

SYSTEM UNITS

In Apex, a unit may be either a system unit or not. At all times
there should be at least one valid system unit on line, so, if
you have only one disk drive, most of your disks will be system
units. If you have more than one disk drive, you will probably
have only one system unit on line at a time. A system unit is
distinguished from a non-system unit by the existence of the
files with the SYS extension. These files can be deleted from a
system unit to make the unit into a non—-system unit.

FORMATTING DISKS

Apex disks must, in general, be formatted before they can be
used. This process is a property of the individual disk and
drive you have, so Apex leaves this process as an external
function to be completed by the process described by the disk
drive supplier.

The DOS disk you received with Apex has one important detail
which is different from most DOS disks. The DOS "INIT" process,
which formats an Apple II 5" disk, when performed from this
disk, will format a disk with a special sectoring which allows
Apex to run at the maximum speed.

Note that the Apple DOS "INIT" process is something unique to
the Apple mini-floppies. It has nothing to do with other disks,
the Apex INIT command, or to the Apex MAKER process which must
be performed separately.

PAGE 8

FILES IN APEX

TYPES OF FILES

At this time, there are three main types of files handled by
APEX. They are system files, save files, and text files.

System files contain the Apex system itself and have a unique
format determined by the operating needs of Apex.

A save file is a memory image of an executable program. The
program is saved on a unit along with run-time information, such

as starting address, exit address, error address, and default
information.

A text file is a serial sequence of ASCII characters. The file
can be composed of any ASCII text characters except Control-Z
($1A). Control-Z is used as an end-of-file mark.

FILE SPECIFICATIONS

When written out in full, an Apex file specification consists of
a unit number, a file name, and a file extension. For example:

2:NICENAME.TYP

unit file name extension

The legal partial file specifications can be determined from the
syntax diagrams. In many cases a file specification can be
abbreviated to only one of the three parts, or even to just the
colon character. A number alone, with no colon, will be taken as
a unit specification, not a file specification, whenever both
options are possibilities.

The unit number determines the unit which has the file, the name
is an arbitrary name you assign (except for SYS files), and the

extension is a file type descriptor.

In cases where a file specification is intended to specify more

PAGE 9

than one file, such as in copy or delete operations, a "wild" or
"fuzzy" file specification can be used. Any character in the
name or extension part can be replaced by a question mark
character which will match any character in that position. The
entire name or extension part can be made fuzzy by substituting
an asterisk for that part of the specification. Thus "*.*" means
all files, while "*.X??" means all files whose extension begins
with the letter X.

ILLEGAL FILE NAMES

Apex file names can be up to eight characters long. The first
character may not be a digit.

You are prevented from creating files whose names contain the
slash, asterisk or question-mark characters. Also you may not
create files with the extension BAK.

STANDARD EXTENSIONS

File name extensions are used to distinguish the different forms
of the same information. For example the same program can exist
as a source file (P65), a backup source file (BAK), an assembled
binary file (BIN), and an executable image (SAV).

The assignment of file extensions is up to you. You may freely
invent and use extensions at your whim. However, there are
certain special extensions and certain conventional extensions
which will occur in the defaulting process. The special
extensions are SYS and BAK. The basic conventional extensions
are SAV, P65, and BIN. Depending upon the software you are
running under Apex you may come across other extensions 1like
XPL, I2L, FCL, LST, BAS, TMP, or DAT.

The special extensions are:

SYS These are special files which exist on a system unit
and have special properties. See later (pg. 12).

BAK These are files which contain a previous revision of
a text or data file.

Some conventional extensions are:

SAV These are files which contain a special form of
memory image which is directly executable by a run

PAGE 10

command .
P65 These are Assembly language source files.
BIN These are the assembler output and loader input files.

USING FILES

ASCII files generally contain information that is to be
processed in one way or another. The information is wusually
processed by a program which exists in a SAV File.

! output !<KLKLKLKLLK! pro- 1<KLKKLL Y input !
! file ! !' gram ! ! file !

As the information is processed, it passes from the input file
through the program to the output file.

The input file can be any file that exists on a unit. Since the
information is read from the input file, it must already exist
on some unit. The program can be any program that processes
information and has been saved as a SAV file. The output file is
a vacant area on the designated output unit that is set aside by
the operating system. The vacant space is filled by the freshly
processed information. It is not neccessary for the program to
have both an input and an output file. Depending upon the nature
of the information processing, the program may require only an
input file, only an output file, or many files.

OPENING AND CLOSING FILES

The process of setting up input and output files is called
"OPENING" the files. The Apex run and OPEN commands provide a
simple means for opening the basic input and output file
required by many programs. As in:

ASM FROG
or

OPEN PIGKDOG

The system resident function KSCAN can be used to find other
files on a unit (pg. 37).

These files are "setup” by Apex and the information about them

PAGE 11

is placed in the input and output file descriptors in the system
page. Programs and handlers that need to use the files can

retrieve this information and use it to control their access to
the disks.

A file setup by Apex will have a status byte equal to one. If no
file was setup by Apex the associated file descriptor block will
have a status of zero (pg.34).

Initially Apex will assign an output file to the largest
remaining empty space on the designated unit. The program which
writes information into the file must reset the ending block
number to the actual last block used, and then mark the file
closed, by setting its status byte to S$FF. When the Apex
Exec regains control, it will correct the directory of the unit
to reflect the actual size of the file.

If the files are to be accessed in a byte serial fashion, as is
the case with many programs, assemblers for example, then the
files can be treated exactly like any other byte I1/0 device and
accessed through the byte I/0 device handler (device 3). In this
case, the program need not do anything special at all.

As with any device, the program must open the device for input
and/or output, read or write bytes to the device and close the
device before it runs to termination. These operations are all

standard functions which every device handler must be able to
perform.

If a file is written, but not closed, it will be discarded unless
the Apex command CLOSE is used before any new files are opened.

BACKUP FILES

Whenever a file is modified, a new copy is made, and we have a
choice. We can either delete the old version, or we can rename
it so that the same name does not occur twice in the directory.
In Apex, the choice is yours.

In some instances, the Apex will simply delete the original
file, leaving only one file with the name. In some instances, it
will change the extension of the original file to "BAK". In this
case, you always have at least one old version of the file in
case of disaster. The system wide switch BACKUP turns the option
on or off. It is changed by the DO and NO commands to Apex.

PAGE 12

Even when we have the backup switch on, we do not want every
file name duplication to produce backups. Generally we only want
to backup source files. To control this, every program which
produces an output file has its own local backup switch. This
switch is changed by the SET utility. In order for backups to be
produced, both the local and the system wide backup switches
must be on.

Apex protects BAK files by preventing you from changing them. In
order to work with them as normal files, you must rename them.

SYSTEM FILES

In Apex there are special system files with the SYS extension.
They are:

RESCOD.SYS
This file contains the resident portion of Apex. It
is only required on bootable system units. It is 9
blocks long and must begin in block 17.

SYSTEM.SYS
This file contains the command executive. It is required

on all system units. It is 65 blocks long and can reside
anywhere on a unit.

SCRATCH.SYS
This file is the space Apex will use to save the part
of memory that the command executive uses. It is required
by several system functions and will normally exist on
every system unit. It is 65 blocks long and can reside
anywhere on a unit.

PAGE 13

DEFAULTS

Apex has a powerful default mechanism which will allow commands
to be extremely abbreviated. These defaults may take a little
getting used to at first, but in time you will develop a feel
for just how much you really need to type to get Apex to do what
you want. The syntax diagrams in this manual will help you
determine the range of possibilities.

Defaults in Apex are based upon a few basic concepts which are
described here.

Apex has a "system” unit and a "task"” unit. The system unit is
initially the unit you booted from, but can be changed by the
SYSTEM command. The task unit is the unit number attached to the
default file name, which can be changed with the DFILE command.

In operation, Apex will use the system unit for storing such
things as default information, the date etc. It will also,
unless told otherwise, look on the system unit for programs you
request in a run command. Hence, the system unit is where you
normally keep your commonly used programs such as editors and
assemblers. The task unit is the default for all other
operations. For example, input and output files will default to
the task unit. Hence the task unit is where you keep the program
you are working on.

Apex has a system wide default file specification which will be
used whenever no other file name is specified. The default file
has a unit and extension attached to it. The unit will be the
task unit and the extension will be used when all other sources
of a reasonable extension have no suggestions to make.

In general, the context of a command will suggest an extension
which has a higher priority than the default extension, but a
lower priority than an explicily given extension. For example,
the GET command will suggest an extension of SAV for its file
argument.

However, extensions are for your convenience, not Apex”s, so you
may invent and use any extensions you please. This leads to a
possible danger. If you spell it out, Apex will happily try to
run a text file or edit a runable program image.

PAGE 14

GENERAL DEFAULT STRUCTURE

Basically, the default structure automatically provides file
names whenever the user omits them. The system default file is
used to control the current working file. If an OPEN or run
command is entered without an argument and followed by a space,
the system default file name will be taken as the input and/or
output file for that command.

Each saved program can automatically control its input and
output extensions. This enables programs like the assembler to
specify BIN for the binary output file, or the XPLO loader to
specify I2L as its dinput file extension. These suggested
extensions are kept in the program specific part of the system
page and can be set up using the SET utility.

When these two systems of defaults are used together, they
eliminate most of the typing during program development.

For example, let”s say that you are writing a machine language
program to catalog your stamp collection. You have decided to
call the program "STAMP". Since this file will be the active
working file, you will set the system default file name to this
file with the DFILE command. Assuming you want unit 1 to be the

task unit, you could type:

DFILE 1:STAMP.P65

Generally, you will be editing, then assembling, then loading
and finally saving the file. Initially you must make the file
for the first time. This can be done in several ways, but simply
typing MAKE followed by a space and a return will do the job.

If you then type the name of the editor (probably EDIT) followed
by a space, the editor will take STAMP.P65 as it“s input and
output file.

When you are finished editing, you are ready to assemble.
Running the assembler will read STAMP.P65 as it”s input file.
But, because the assembler has a special extension for it”s
output file, it will create STAMP.BIN as the output file.

As soon as the file is assembled, you will probably want to
load. Typing LOAD followed by a space will set STAMP.BIN as the
load file for the loader. No output file will be set, because

PAGE 15

the 1loader default indicates that no output file is needed.

The loader will return to the Apex Exec. At this point, you can
use the SWAP or START commands to test the program or you can
save the program with the SAVE command. Note that, unless the
system page properties of the program were set up as a part of
the loading process, the START command cannot be used yet, and
the SAVE command will need to be told what areas of memory to
save.

After the save, SET (space)(return) can be used to setup the
program”s run parameters.

The default structure is set up so that it can be overridden in
several different ways. Generally, the defaults can be
overridden by explicitly spelling out part of the input or
output file specification. Here are some examples:

EDIT A.FIL<KA.FIL Opens "A" for dinput and "A" for output.
EDIT B.FIL<A.FIL Opens "A" for input and "B" for output.
EDIT B.FIL Opens "B" for both input and output.
EDIT B.FILK< Opens "B" for output only.

EDIT B Opens "B" with the default extension.
EDIT <B.FIL Opens "B" for input only.

EDIT(SPACE) Opens input and output default files.
EDIT .TMP<.FIL Opens the file with other extensions.
EDIT 2:TEMPK: Opens a new file for output, same input.

Refer to the description of the OPEN and run commands for
further discussion (pgs 38,42).

PAGE 16

SWAPPING

An Apple II has a relatively small memory space. Even a fully
expanded system is only 48K. A typical operating system runs in
10-20K, so that even with fully expanded memory, the operating
system uses up one third of the memory.

Apex deals with this problem by sharing the memory between the
user program and the operating system. If the program is smaller
than about 20K, the operating system and the user program can
fit in main memory without any conflict. If the program grows
larger than 20K, it is allowed to over—write part of the Apex
Exec. Whenever it 1is needed again, the Exec is simply reloaded
from disk.

In the situation where a large program and the operating system
must co-operate, the Apex Exec is swapped in and out of memory
as needed. The swapping operation involves saving the resident
program in a scratch area on the disk and then reloading the
Exec. Thus, an exact copy of the current state of the program
can be preserved while the Exec is in memory. Since Apex is
fast, the entire swapping operation takes only a few seconds.
The swapped out program can be restarted or can be manipulated
by the operating system. Using this technique, every program can
use nearly all of the computer”s memory.

WHEN YOU SWAP AND WHEN YOU DON'T

Even the few seconds of swap time is unnec essary most of the
time, since you are typically re-entering Apex without caring
about the previous memory content. So the "normal” entry to Apex
is the REENTER point, which does not save the current memory
content. However, if you want to preserve the current memory
content, for later use, or because you want to make a SAV file
out of it, you must swap. Also, error conditions should swap
whenever possible so that the debug process is simpler. Thus,
there is a SAVER entry point to Apex which is taken whenever a
program is aborted with the Control-P key or when you use
Control-Y to re-enter Apex from the Apple ROM monitor. It is
also taken as the standard exit of loaders which setup a memory
content for future use. Apex entry points are discussed further
under that topic (pg 36).

PAGE 17

You can return to a swapped out memory content with the SWAP and
START commands to Apex. You can save a swapped out memory
content in a file with the SAVE command. You can restore a SAVEd
memory content with the run and GET commands.

RUNNING WITHOUT SWAPPING

The Apex system files use a significant amount of space on an
Apple mini-floppy. If you have only one drive you may encounter
a program which simply cannot be worked with on a single system
unit.

It is possible to go through a sequence of running programs
which do not use the command excutive memory space without a
valid system unit on line.

So, in extreme cases, with care, you can use a non-system disk
to edit and assemble large programs. The loading process will
require a system unit however.

The distributed assembler and editor are setup to not overlay
the Apex Exec. This 1limits their capability somewhat. You can
set them up to use more memory, by changing the appropriate

system page parameters (pg. 33). However then they will have to
be be run from a valid system unit.

PAGE 18

One of the most reasonable ways to keep track of your work,
particularly on floppy disks, where numerous revisions of a
program tend to get scattered over many disks, is the use of
dates on files. Apex maintains a system date which it saves on
the system unit and which it will attach to every file as it is
created or when it is modified. It is a very good idea to get
used to maintaining the system date right from the start. The
DATE command is used to change the system date, and the /L switch

on the DIRECTORY command is used to see the dates attached to
files.

PAGE 19

ERRORS

Apex is verbose and quite clear in most situations. Its messages
and this manual should be sufficient to follow its normal
operation.

However, in the case where an error occurs in the runtime
system, the error message is cryptic. You get a question-mark
and a number alone on a line. Normally the number is 3, which
indicates an I/0 error. The most common I/0 error is an attempt
to access a disabled disk unit, such as a drive with the door
open, or with no disk in it. Any other number indicates an
unreasonable condition in the runtime system and probably

means that that area of memory has been changed and you must
reboot.

PAGE 20

APEX SYNTAX

This manual will not discuss the Apex syntax in any detail. The
examples should be all you need. However a few points must be
made here.

Apex commands are usually one line long. The RETURN key ends the
command. Until that time the 1line is being processed by the
console handler and so the command editing features of Apex
depend upon the handler you have. See that section for details

(pg. 29).

If a command line is given to Apex, and is incomplete in a
determinable way, Apex will simply request more input, which
results in a new flashing cursor on the next line.

Apex regards the slash character as the command 1line switch
prefix. Hence, any slash character, and the character which
follows it, are not a normal part of the command. There are also
other special characters used to terminate programs etc. These
are properties of the console handler and may vary. However
there are fairly strong conventions for these, which this manual
will assume at times.

Numbers given to Apex are taken as sixteen bit unsigned
integers. The minus and period characters are not parts of
numbers and will usually be taken as delimiters.

Numbers in Apex can be in decimal or in hexadecimal. If the
number is to be taken as hexadecimal it must be prefixed by a
dollar-sign.

PAGE 21

SWITCHES IN APEX

COMMAND LINE SWITCHES

Some commands use a special feature called "command switches".
Switches are special character included with a command that
modifies the action of the command. Command line switches are
preceeded by a FORWARD SLASH character (/). Any character
following a by a forward slash will be taken as a switch
character. Switches can be placed anywhere within the command
line. For example:

DIRECTORY/L

SYSTEM WIDE SWITCHES

In Apex there are three system-wide switches which are changed
by the NO and DO commands. These are the BACKUP, CHECK and PACK
switches.

The BACKUP switch will allow or prevent the backup file feature.
With BACKUP on the source files you are working with will not be

erased until they are two revisions old. See the section on Apex
files (pg. 8).

If the CHECK switch is on, Apex will check every output file to
make sure it is readable before deleting or renaming any old
version of the file that may exist.

If the PACK switch is on, Apex will take time out every now and
then to move files on the disk to keep the empty space on the
unit more optimal. Packing will only move the most recently
closed output file so fragmentation of the empty space can still
occur in time, but it takes much longer with the pack switch on
than with it off.

SAVE FILE SWITCHES

Each SAV file which expects to produce an output file has three
switches to control this file. They are the BACKUP, SIZE and
KEEP DATE switches. These switches are maintained in the program
specific portion of the system page and may be setup manually or

PAGE 22

with the Apex SET utility.

The SAV file BACKUP switch tells Apex whether this program
produces an output file which is a revision of its input file.
Progams which merely revise files can reasonably backup the old
version of the file. An editor is an example of such a program.
Programs, such as assemblers, which produce completely different

output files simply leave the input file alone and so have their
local backup switch off.

If the SIZE switch is on, Apex will require that the available
space for the output file be at least as large as the input
file. This is a useful protection for editors and other programs
which tend to make files larger.

The KEEP DATE switch controls the date assigned to a file. If it
is on, then the date on the output file will be obtained from
the date that the input file had; otherwise, the file will be
dated with the system date.

PAGE 23

MEMORY USE

There is a diagram of apex memory use in this manual. It should
be referred to in conjunction with this discussion.

At the most central level, there is a section of Apex which must
be resident at all times. This section lives in the highest 4k
of your machine and contains the basic system functions, the
disk drivers, and the code to handle the keyboard and screen.

The highest page of your memory, the section from $BFO0O thru
SBFFF, is the central communications area for Apex. It 1is
through this page that all programs running under Apex will
communicate with Apex itself. This page is discussed in detail
elsewhere (pg-31).

At the next level we have another 4K section of memory, called
the system residual area, which normally contains Apex device
handlers and the code for certain run—-time system functions.
When your programs are loaded, this section of code remains in
memory and so its funtions are available to your programs.
However, your program is free to overwrite this area with other
information if required. This area of memory is also used as the
place where other run-time utility packages for specific
applications are placed. The normal contents of this area will
be restored when your program runs to completion.

The next level, the Apex Exec, is overlaid onto a 12k section of
memory below the system residual area. Programs which do not use
this area of memory can leave the Apex Exec resident while they
run by setting the SYBOMB flag in the system page to FALSE=0. If
your program does use this area of memory, the SYBOMB flag

should be set to TRUE=$FF, which will cause Apex to reload the
Exec and the residual area when your program runs to termi-

nation.

Apex allocates page zero (hex addresses $0 through S$FF) as
follows. The first 32 bytes are considered very temporary and
are never saved. Apex will frequently use the first six of
these. The next 48 bytes are reserved for use by the ROM in your
Apple and should not be used by normal programs. The remainder,
from $50 through $FF is for use by your programs and will be
saved with them in SAV files.

PAGE 24

The first 80 bytes of the system page at $BFO00 are a part of a
user program. They are used to describe various properties of
the program which Apex needs to know about. Therefore these
bytes are also saved with a program. The SET utility can be used
to modify these locations in a SAV file.

Every program which uses Apex files must pay some attention to
the location of its input and output buffers which are defined
in the system page. This is discussed in more detail elsewhere

(pg.32).

Beyond these memory allocations Apex leaves the rest of your
Apple alone. Thus the maximum possible flexibility is
maintained.

OTHER MEMORY USE

The standard bootstrap process will use pages 3, 8 and 9 as well
as the memory from $6000 upward.

The SAVER entry process will use memory from $A000 upward,
saving $6000-$9FFF in the scratch area of the system unit.

The console handler will use page 2 as the input line buffer.
Also, by using ROM routines, it will affect the areas of page
zero between $20 and $4F.

The bootstrap process will setup the auto-start and Control-Y
vectors in page 3.

Be warned that the Apple BASICs will use page zero locations
other than those set aside for ROM use.

PAGE 25

Apex has a device independant mechanism for accessing periﬂéral
devices which can be made to communicate in a serial byte
stream. Each such device has a handler. Each handler has a set
of five standard functions which it must be able to perform. In
addition, a device may have other functions which it can perform
as well, but these will be different from one device to another.

Handlers in Apex are "plugable”. That is, you can replace any
handler in Apex by another piece of code without affecting
anything except the funtioning of that device. This is how you
tailor Apex to your specific printer for example.

Apex handlers are not sacred. You are free to change them at
your whim. For example, if you are used to some 1line delete
character other than Control-X then you are free to change the
console handler accordingly.

0f course, handlers are a convenience, not a rigid structure.
Your programs need not use the handlers; after all, this is your
machine! Certain programs, in fact, will find the formalized
structure of handlers a problem, and so will contain their own
code to drive the device in question. The classic case is
editors which interface with the the most complex periﬂbral of
all - you. But note that if a program does use the handlers then
it will be "device independant” and will be able to use any
device that you can create a handler for. Since no system stays
the same for very long, this is a major advantage.

On the Apple II, most peripheral devices are supplied with an on
board ROM which 1is supposed to contain the code necessary for
driving the device. If this mechanism is satisfactory for a
particular device, then the Apex handler becomes simply a series
of jumps to the appropriate slot address, $CX00. However, it is
common for the ROM code to be oriented to some special purpose,
other than the one you have in mind, and so the handler becomes
a little more complex. Apex gives you this freedom.

PAGE 26

HANDLER ENTRY POINTS

Each handler must begin with five jump vectors which occur in a
defined sequence and perform specified functions. These are
listed below. Every handler function must return with the carry
flag reflecting the success or failure of the requested
function. A set carry flag indicates failure. Data is passed to
and from handlers in the accumulator and the Y register as
neccessary for the specific function. A handler need not
preserve any registers and should never be assumed to do so.
Handlers may not change any system page information, and may
not use any locations in page zero except the first six.

1. OPEN FOR INPUT ENTRY=0

This entry point must initialize the input side of the device.
This entry point must always have been called before the INPUT
entry is ever called. This entry should also check for the
existence and readiness of the device to perform byte input.
It should flush the input buffer if any.

2. OPEN FOR OUTPUT ENTRY=3

This entry point must initialize the output side of the device.
This entry point must always have been called before the OUTPUT
entry 1is ever called. This entry should also check for the
existence and readiness of the device to perform byte output.
It should reset the output buffer if any.

3. INPUT A BYTE ENTRY=6

This entry point will fetch a byte from the device and return
it in the accumulator.

4. OUTPUT A BYTE ENTRY=9

This entry point will output the byte in the accumulator to
the device.

5. CLOSE DEVICE ENTRY=12
This entry point will terminate access to the device. Output

buffers, if any, are flushed. If the device can be powered up
and down under program control, this entry should turn it off.

PAGE 27

ACCESSING DEVICE HANDLERS

The standard method of calling a device handler to perform a
function is as follows: The number of the device to be accessed
is placed in the system page location NOWDEV at $BF5C. The X
register is set to the number of the function to be performed.
The Accumulator and Y registers are setup, if required, and a
subroutine call (JSR) is made to the system entry point KHAND at
$BFD9. KHAND will use the device handler table to dispatch to
the correct entry point.

INSERTING DEVICE HANDLERS.

In order for KHAND to be able to find the device in question the
base address of its handler must be placed in the device driver
table in the system page. Device drivers can be anywhere in
memory, but, in order to have them automatically loaded, they
should be placed in the system resident or system residual area.
The system residual area is saved in the system file SYSTEM.SYS
when the INIT command to Apex is performed. The system resident
area and the system page area containing the device driver
tables is saved in the file RESCOD.SYS when the system utility
BOOTER is used to rewrite the bootstrap.

STANDARD DEVICE HANDLERS

Every implementation of Apex should have the following device
handlers:

DEVICE O: The console, as a line by line device. This handler
should provide a means for the user to correct the console input
line before making the bytes available to the calling program.
The open input entry should clear the input line. This handler
should deal with the echoing of the input back to the output.

DEVICE 1: The console, as an unbuffered, non-echoed, character
by character device. It should never give errors. This handler
should deal with the trap characters (normally Control-C and
Control-P) which can exit or abort the currently running
program.

DEVICE 3: This handler provides access to the open Apex files as
byte by byte streams. The open for input entry should reset the
input file to its beginning. The close entry should write an
end-of-file mark to the output file and close it. A file which

PAGE 28

is written but never closed should be discarded.

DEVICE 7: A null device. It provides endless end-of-file marks
on input and swallows endless amounts of output. It never gives
errors. Typically this device is used as a sink for unwanted
output, such as an assembly 1listing which is not needed.

Most implementations of Apex will also have a printer handler as
device 2 and many will have a serial RS232 port as device 4.
Devices 5 and 6 are available for other periﬂbrals.

PAGE 29

THE CONSOLE DEVICE

This section gives some specifics on the standard console
handler supplied with Apex. Listings are included, both to serve
as an example handler, and so that the exact functioning can be
determined.

Devices O and 1 in Apex are the standard "console"” which
consists of the Apple keyboard and TV screen. In some config-
urations, the “console device will be a terminal accessed through
a serial interface or an alternative TV display card. In these

cases the console device handler may be different from the
handler described here.

The difference between device 0 and device 1 is that device 0 is
line buffered and automatically echoed, while device 1 is not.

The basic console handler, device 1, deals with keyboard input
as follows: Most keys produce the correct 7 bit ASCII code one
would expect. Note that, unlike the Apple ROM routines, the high
bit of the character is not set. Certain keys have special
functions.

The trap keys are as follows: Control-C will exit immediately
through the current program”s normal exit vector. Control-P will
exit through the current program” s abort exit vector.

Some keys are translated to other characters: Control-0 will
return the ASCII code for backslash ($5C) while Control-K will
return the ASCII code for ‘left square bracket ($5B). These are
provided to round out the ASCII set which can be generated from
the standard Apple keyboard. Backspace, or Control-H, which is
generated by the left arrow on the apple keyboard, is changed to
ASCII rubout (S$7F).

In addition, the key Control-Shift-M is used to force the Apple
keyboard to generate lower case. This key toggles the case
conversion on and off in sequence. When the lower case switch is
on, conversion takes place on all 64 normal ASCII upper case
codes.

On the output side of device 1, the routine will monitor the
keyboard and hang waiting for another key to be struck if

PAGE 30

Control-S was struck on the keyboard.

The device 1 output routines will interpret carriage return,
line feed, tab, form feed, bel, backspace and rubout.
In addition, they will convert all lower case characters to
inverted video and all control characters, that do not have an
operational function, into flashing characters.

Device O performs using device 1, so in general the above
applies.

The line input routine interprets the screen edit functions that
are documented in the standard Apple II reference manual. Thus
left and right arrow, and the escape sequences perform as usual.
Control-X is the 1line cancel function. The limitations of the
standard Apple screen editing features still apply. In addition,
the input routine will discard occumences of line feed
(Control-J) and Control-Z.

Device O has the ability to input from files by using deferred
console execute mode. A flag in the system page controls this
function, which will be used in future releases of Apex.

The console handler uses the Apple ROM windowing routines but
does not use the vectors at $36 and $38. These vectors are
modified by too many Apple programs to be reliable. You may wish
to use them to contruct a "variable"” device handler, which uses
the Control-P command to the Apple ROM Monitor and can talk to
any slot.

PAGE 31

APEX SYSTEM PAGE

The memory area from $BFOO through $BFFF is used to communicate
between programs and Apex itself. This page is called the
System page. It”s organization cannot be changed without major
modifications to Apex and all programs which run under Apex.

The area between $BFO00 and $BF4F is used to store all the global
parameters of the particular program in memory at the time. It
is saved with, and read from every SAV file.

The area from $BF50 through S$BFFF is used to store the system
wide global information that does not change with the
particular program which happens to be resident.

The funtion of the various globals is covered briefly in this

section. Refer to the listings and to other parts of this manual
for more detail.

START AND EXIT VECTORS.

Each program has two start and three exit vectors. The start
vectors should be jumps to the respective starting points of the
program. The start and restart vectors are usually the same.

The exit vectors are the way in which a program must reenter
Apex when it runs to completion. A program should not normally
exit to the actual Apex entry vectors, instead it should exit to
these vectors which will, in turm, enter Apex. This procedure
provides a standard way to change the exit mechanism of programs
in exceptional cases, such as to disable the trap exit capa-

bility in editors, or to implement a batch processing facility
under Apex.

VEXIT Taken when a program runs to normal termination, or
when the Control-C key is typed. Normally points to the
Apex REENTER point at $BFDO.

VERROR Taken when a program exits on a fatal error condition.

This normally points to the Apex RELOAD entry point at
$BFD6.

PAGE 32

VABORT Taken when a program is exited by typing the Control-P
key. It normally points to the Apex SAVER entry point
at $BFD3.

SAVED IMAGE PARAMETERS

The globals DSKMEM and DSKSIZ reflect the values that USRMEM and
PROSIZ had when the program was saved. They are set by Apex and
should not be changed or set in normal use.

PROGRAM SPACE PARAMETERS

The globals USRMEM and PROSIZ tell Apex where and how large
the program to be saved is. USRMEM is the first address, other
than the page zero area, to be saved. PROSIZ is the number of
pages beyond USRMEM to be saved. These values are setup by
the Apex SAVE command when it is used with arguments.

I2L PARAMETERS

These parameters are used for system utilities and are not to be
affected by normal programs. The I2LFLG location should contain
FALSE=$00 for all normal programs.

BUFFERS

The locations OTBUFD,OTBUFE,INBUFD and INBUFE are used to
determine what area of memory the byte I/0 to disk files handler
(device 3) will use as input and output buffers. These
parameters are part of the program space so that each program
can select the buffers individually.

These buffers must begin on a page boundary and extend for an
integral number of pages.

Note that the KSCAN routine will use the input buffer as a place
to put the directory. Thus the input buffer pointers must be

valid, and the buffer at least three pages long, whenever KSCAN
is used.

The Apex Exec will use the area from $6000 through $63FF for its
buffers. The standard BIN file loader will preset the buffers to
the memory area from $A000 through S$AFFF.

If Apex is entered via the RELOAD or SAVER entry points KSCAN

PAGE 33

will be used with an input buffer at $A000 to find the system
files.

OTHER PROGRAM SPECIFIC GLOBALS

The rerun flag RERUNF is preset by Apex to zero whenever a
program is run. The program itself may modify and test this
byte at will.

The default input and output extensions are the extensions for
input and output files which the program will use. There are two
special codings for these:

1) The coding "@@@" means that the program uses the corres-
ponding file but has no suggestion to make about extensions. In
this case the OPEN function of Apex will use the extensions from
the system default file name as set by the DFILE command.

2) The coding " ", that is, three space charaters, means that
the program does not require this file. Apex will not allow the
corresponding file to be opened.

The byte DEFAUL holds the program specific switches. These
are the SIZE, BACKUP and KEEP DATE switches. A value of zero
in this byte corresponds to all switches off.

The SYBOMB flag tells Apex wether the user program uses the Apex
Exec space in memory. It should be TRUE=$FF if the program
disturbs any memory above $7000, and to FALSE=$00 otherwise.
Strange things will happen if this flag is wrong, particulary if
the flag incorrectly holds the special system value of $55. If
SYBOMB is set to false, Apex will use the area between $6000 and
$S6FFF when the executive executes. However, Apex does mnot
require that this area have any particular initial content, so
both the user program and Apex may use the space alternately.

The byte USRTOP is intended to hold the (page number + one) of
the highest page the current program may use. This byte is
irrelevant (but should be set for cleanliness anyway) if the
program uses a fixed amount of memory. Some programs, such as
editors and assemblers, will use as much memory as possible so
they will use this byte to determine how much they are allowed
to use. The buffers should always have addresses higher than
(or begin at) this page.

USRTOP should be set with due regard for the SYBOMB flag. Both

PAGE 34

the buffers and USRTOP should never be above $7000 if SYBOMB is
FALSE.

INPUT/OUTPUT FILE PARAMETERS

These areas are setup by the OPEN or run operations in Apex.
They remain valid while Apex loads and executes a program stored
as a SAV file. The program can therefore use them as a simple
way to get at the first input and output files.

Apex sets up the starting and ending block numbers, the unit
number and the directory number of the files. In addition, Apex
will set the corresponding flag byte (INFLG or OTFLG) to 1 if
the file area is setup and to 0O if no file was setup.

If the byte I/0 to files handler is used, it will use these
parameters to access the input and output file as required.

Additional byte I/0 input files may be opened by using the SCAN
entry point to the byte I/0 handler. See the section on using
files (pg.10) and the listings.

THE UNIT DRIVER INFORMATION BLOCK

This is an area for use in communicating the multiple parameters
required by the unit drivers to those drivers. The system
functions KREAD, KWRITE and KSCAN use this block. Refer to the
listings for the details.

THE DEVICE HANDLER TABLE

This is a table of eight addresses, one for each possible byte
I/0 device handler. They contain the address of the start of the
handler. They are the ONLY way Apex knows about the handlers and
so they are all that you need change when handlers change or
move. Access to handlers is via the system function KHAND which
will use this address to compute the final address of the
routine to be executed (pg. 27). '

OTHER SYSTEM DEPENDANT GLOBALS
The flag SYSENF is used by the Apex resident portion to

communicate with the non-resident portion, and is not for any
other use.

PAGE 35

The parameters SYSDEV, SYSBLK and SWPBLK describe the current
system unit. A study of the resident code is required for a
complete understanding of when these values are valid.

The parameter DEVMSK indicates which Apex units are active on a
given system. See elsewhere for the bit mapping used (pg.6).

SYSDAT holds the current system date as a 16 bit integer formed
by the equasion:

((YEAR-1976)*16+MONTH)*32+DAY
The byte following SYSDAT is used to indicate the wvalidity of

the system date. When valid it should hold the "exclusive or"
of the "and" of the two bytes of the system date.

PAGE 36

APEX RESIDENT SYSTEM VECTORS

If you look at the 1listings for the system page you will see
that Apex has a set of vectors which provide a single and stable
method for other programs (incuding the Apex Exec) to access the
code included in the resident portion of Apex. This code should
never be accessed by any other means.

APEX ENTRY POINTS

There are three ways in which you may enter Apex from the
outside. They all assume that the resident memory area has
been correctly setup by the bootup process. The entries are:

REENTER: ($BFDO)

This entry point assumes that Apex has been recently run and has
all its parameters correctly set. If you enter Apex here, it
will decide wether or not it needs to reload, and proceed
accordingly. This entry point will assume that the system unit
information in the system page is current. The keyboard escape
Control-C will re—enter Apex by this vector.

SAVER: ($BFD3)

This entry point will reload Apex, but will first save the
current memory image in the file SCRATCH.SYS. It is used if the
Apex commands SWAP, START or SAVE will subsequently be used. The
keyboard escape Control-P will re-enter Apex through this
vector.

RELOAD: ($BFD6)

This entry point is the cold start entry for Apex. It will
reload from the system unit independant of the state of the
system page. If Apex is started from a different system unit
this entry point should be used.

APEX RESIDENT SYSTEM FUNCTIONS

Some resident system funtions are standard 6502 subroutines
which perform some generally useful task. These routines may
change any registers and will return with the carry flag set if

they failed to perform their task, and clear otherwise.

KHAND This allows general device independant access to the

PAGE 37

device handlers. See the section on handlers (pg. 25).

KSCAN This routine provides a simple means for finding files
by name on Apex units. Examining the code for this
routine will clarify the Apex directory format.

KRESTD This routine will reset the disk driver routines.

KREAD This routine is the basic means by which all block
oriented reads are done from Apex units. It performs
the read in accordance with the parameters placed in
the unit driver information block. See the listings.

KWRITE This is the companion routine to KREAD.
The other vectors provide paths for the basic program execution

functions required by the Apex Exec. They would not normally be
used by user programs.

PAGE 38

COMMANDS

Commands are instructions to the operating system to perform
specific operations. A command can be executed by typing the
command on the keyboard, followed by a CARRIAGE RETURN. All of
the commands in Apex can be abbreviated to two characters. For
example DIRECTORY can be abbreviated to DI.

Many commands take arguments. The arguments generally clarify or
elaborate upon the command”s action. A SPACE character is used -
to separate a command from the argument. For example:

[COMMAND] [argument]

The following pages outline only the specific aspects of each
Apex command. To develop a complete understanding of the
commands you must read this entire manual.

RUN

Most operating systems have a "RUN" command. This command is
used to execute any program which has been saved as a file. In
Apex, the run command is an implied command. Files are executed
simply by typing the name of the file.

This allows SAV files to be executed in such a way that they act
just 1like Apex commands. For example, let”s say that you have a
program that handles your printer. It is customized so that it
does tabs and form feeds and understands all of the idiosyn-
crasies of your printer. This program could be named PRINT.SAV.
Then, whenever you wish to print a file, all you need to do
is type word "PRINT" followed by the name of the file you wish
to print.

In fact, this concept goes one step further: If a SAV file on
your system unit has the same name as a built in Apex command
then the file will have priority over the command. Thus you can
customize any Apex commands to your own needs without modifying
the basic Apex Executive.

A run command normally expects to find the file on the system
unit. If the file exists on some other unit, it can be run by
prefixing the name with the unit number:

PAGE 39

2:PRINT FROG.TXT

Executing a program can also have the effect of opening a file
for input or output or both. For example:

EDIT FROG.FIL

Here Apex will load and execute the file EDIT.SAV. At the same
time, it will set up FROG.FIL as the input and output file. When
the editor is running, it will read information from the input
file and write information to the newly forming output file.

More information on opening files is given .elsewhere
(pg.10, 42).

ZERO

The ZERO command clears the directory of all files, but does not
change any other data on the unit. This operation is wusually
used to set up a new unit or to clear an old one for a different
use. The operation will effectively destroy all the file
information in directory, so use with caution. Apex will ask you
to verify before it will execute the operation. (Note: the
directory can usually be restored by using the backup directory
operations described below). Example:

ZERO 3
MAKE
This command creates a new file. For example:

MAKE FROG
or

MAKE 2:FROG.FIL=25
or

MAKE FROG.FIL=28,150

The first number is the size of the file to be created. The
second is the block number to use.

If no size is specified, Apex will create an empty text file
with the given name. If a size is specified, the allocated area
of the unit will not be cleared and any data left from previous
files will be unaffected.

PAGE 40

If the starting block is not specified, Apex will start the file
at the first empty into which the file fits. If the starting

block is given, the file will begin at that block and extend for
the specified number of blocks.

The MAKE command does not check for file conflicts in any way.
Overlapping files and files with conflicting names can be
created. This allows the MAKE command to be used for error
recovery or other special purposes. In a situation where the
directory has been destroyed and the backup directory is
invalid, some files could be restored by setting up dummy files
across the unit and examining the files until the lost
information is found. A laborious process, but a life saver when
the information is important.

MAKE can also be used to set up files in special configuratons
to exchange disks with other operating systems.

DIRECTORY

The directory command prints information about the active files
contained on a unit. It can be used with no argument, a unit
number argument or a file specification argument.

With no file specification argument, the directory command
prints a directory of all the files on a unit. With a file
specification, information about that specific file will be
printed. When fuzzy file names (* and ?) are used, information
about each match is printed. As described above, a star (*) will
match any file name or extension and a question mark will match
any character. Thus

DIR 1:*.P65

will print information on any file with the extension "P65" on
unit 1 and

will print information about any file on the task unit whose
file name begins with the letters "XPL".

The DIRECTORY command has the ability to accept a switch. The
letter "L" dis used to select between one directory format and
another. With no switches set, a simplified directory is
printed. With the "L" switch set, Apex will print out a complete

PAGE 41

directory that includes file name, size, creation date, and the
area of unit allocated. Thus:

DIR O/L

The first line of the directory listing prints the system day
and date (not the date on the disk), the unit number and the
volume number. The second line contains the title for the
particular unit. The last line printed describes the free space
on the unit. FREE prints the total empty space on a unit. MAX
indicates the largest single free space, which is the largest
single file the unit can hold at present.

If the print out of the directory is larger than will fit on the
screen, the 1listing will pause at the end of the screen.
Striking any key will print the rest of the directory.

DELETE

This command removes the specified files from the directory. If
more than one file is to be deleted, fuzzy file names (* and ?)
can be used.

When Apex deletes files from the directory, it will list all of
the files that it is going to remove. It will then ask you to
verify that these are indeed the files that you wish to remove.
"Y" will remove the files "N" will leave them. Under some
circumstances, deleted files can be restored using the backup
directory described below.

Example:
DELETE 2:FROG.*

The default extension for delete operations is BAK. This ensures
that you have to type a little more than just a colon to delete
the default file. It also allows the command

DELETE *

to delete any backup files you have on the task unit.

SAVE

This command is used to save the contents of memory as an
executable SAV file. The command takes the name you want it
saved as, and optionally, a starting and ending address. If the

PAGE 42

starting and ending address is not specified, the command will
assume that the program area of the system page has the correct
values in the locations USRMEM and PROSIZ and will take the
information from them. The first 80 bytes of the system page and
the area of memory from $0050 through S$O00FF are automatically
included in every saved program. Examples:

SAVE 2:FROG=$800,$1000

SAVE PIG

The save command requires that Apex be re-enterd at the SAVER
entry point immediately prior to the SAVE command. In this way
we can be sure that all of the original memory image will be
correctly saved, even if part of it was overwritten by the Apex
Exec. Apex will take that part of the image to save from the
file SCRATCH.SYS, where it will have been saved when Apex was
entered at the SAVER entry.

If the memory image to be saved was created by a standard Apex
loader, then the loader will have loaded the data and then
automatically re—-entered Apex through the SAVER entry point. In
addition, some loaders (the assembly language binary loader is a
notable exception) will also set up the program size and
location for you, so that the SAVE command need not have any
numeric parameters.

If the memory image was created in some way which leaves you
talking to a standard Apex program, or to the Apple ROM monitor,
Control-P or Control-Y repectively, will re—-enter Apex at the
SAVER entry point.

The SAVE command does not affect any system page paramters other
than the program location and size. So, unless they were set in
some other way, you may wish to set the system related
properties of the program using the SET utility after the SAVE.

OPEN

This command opens files for input, output, or both. Files may
be opened explicitly, or implicitly using the system defaults.

The OPEN command and a run command funtion in the same way, as
far as opening files are concerned. The difference is that the
open command will return immediately to the Apex Exec, while a
run command executes some other program. Opened files remain

PAGE 43

open until Apex 1is re—-entered or some other files are opened.

In the general form, the command is followed by two file
arguments separated by a less—than sign (the "arrow"”). The file
name to the right of the arrow is the input file. The file to
the left of the arrow is the output file. As in:

OPEN OUTPUT<K2:INPUT

Either the input file or the output file can be omitted, and
Apex will only open the file specified. If a single file name,
with no arrow, follows the command, the operating system will
assume that the file is to be both input and output file. For
example:

OPEN B.FIL<KA.FIL Opens "A" for input and "B" for oﬁtputi
OPEN B.FIL Opens "B" for both input and output.
OPEN B.FILK< Opens "B" for output only.

OPEN 0:<2: Opens default file on units as speciifed
OPEN <B.FIL Opens "B" for input only.

OPEN(SPACE) Opens the default file on the task unit.

The OPEN command is wusually used only under special circum-
stances, since files are normally opened in the process of
executing a SAV file. Any SAV file followed by a file name or
names will automatically open the specified files. For example:

ASM FROG.BIN<KFROG.P65

In some situations, a unit will be so full that not enough space
will be available for the output file. This is usually handled
by removing unnecessary files from the unit to make space,
possibly followed by a SQUASH operation. When the unit is so
tight that no space can be made by deleting files, the operating
system allows the output file to be written over the input file.

This is a dangerous operation and should be used with caution.
It relies on the fact that the data is buffered in memory
buffers. Thus, the input file is usually one buffer load ahead
of the output file. However, if the program adds too much
information to the output file the output can overwrite the

PAGE 44

input before the input is read. You must also take care to
ensure that the file doesn”t grow to the point that it will no
longer fit in the free space. The MAKE command can be used to
prevent this by forcing Apex to make the file too large in the
first place.

The overwrite feature is enabled by a /R switch in the command
line. The switch will operate with both the OPEN command and the
implied run command. Examples:

OPEN FROG.FIL/R
EDIT FROG.FIL/R

INITIALIZE

This command is used to re-write a copy of Apex on a system
unit. The SYSTEM.SYS file must already exist on that unit, and
be 65 blocks long. The file does not need to contain any valid
information at this point however, and so it could have been
made by the MAKE command. To write a copy of the currrent Exec
into the file, you type INIT followed by the unit you wish to
save it on. The system will write itself onto the new unit in
the file SYSTEM.SYS. Example:

INIT 0

Note that INIT also saves the system residual area from $A000
through $AFFF. So if you add handlers in this area you should
use INIT to make them permanent.

START

When a program has been saved in the scratch area of the system
unit, and has a valid start vector, it can be restarted using
the START command. Apex keeps track of when it thinks that there
is a valid program in the scratch area. If the system thinks
that there is no valid program in the swap area, it will ask you
to verify the operation. Typing Y will complete the operation, N
will abort it. If you verify a START when the scratch area or
start vector is not valid, you can destroy Apex and may have to
reboot. This command has no arguments or switches.

SWAP

This command is similiar to START. SWAP brings the program in

PAGE 45

the swap area into memory but does not execute the program.
Instead, the ROM monitor is entered. This is useful for patching
programs before they are saved etc. Apex can be re—entered from
the ROM monitor with Control-Y. This command has no arguments or
switches.

GET

This command is similiar to a run command. The operating system
moves a SAV file into memory, but does not begin execution; the
ROM monitor is entered instead. The command is used mostly to
change or patch programs. The program can be moved into memory
using the GET command, then patched, and Apex re-entered with
Control-Y. The program can then be re-saved using the SAVE
command. Eg:

GET 3:FROG.SAV

RENAME

Rename provides a mechanism for changing the name of files.
Any file name or extension can be changed to any other name or
extension. The operating system checks to see that renaming the
file produces no duplicate file conflicts and that the file
names both refer to the same unit. For example:

RENAME NEWFILE<OLDFILE.PIG

CLOSE

This command unconditionally closes any open file. The file size
is left equal to the maximum length of the empty space.
Generally, files are closed automatically in normal operations.
This command is only used to recover from situations where the
program operating on the file has failed to close the file. It
allows the data that has been sent to the output file to be
recovered.

Note that the file will be too long and will probably not
contain an end-of-file mark (Control-Z). The correct file length
and end-of-file can usually be restored /y editing the file. Use
the editor to delete the excess data left in the invalid part of
the file. i

There are no arguments or switches in the close command.

PAGE 46

LIST

This command allows any ASCII text file to be listed on the
console device (Apex device 0). The listing can be interrupted
with Control-S and aborted with Control-C. Example:

LIST 3:FROG.DAT

TITLE

Each unit in Apex can have its own individual title. The title
is used to keep track of how each unit is being used. The title
can be up to 32 characters Jldong.

The TITLE command 's/hsed to set or reset the unit title:

/

TITLE MAILING LISTS

The command also automatically changes the unit volume number.
The volume number is derived from the combination of a random
number and the date. The volume number will be used to prevent
Apex from writing the wrong directory onto a unit - something
that could otherwise happen if you changed disks without
informing Apex with the NEW command.

To title a unit other than the task unit, you prefix the new
title with the unit number:

TI 4:FOOD FOR THOUGHT

DFILE

The DFILE command is used to read or change the system wide file
default file specification. If DF is typed without an argument,
the system defaults will be printed. If the command is followed
by a file name, the system wide file default will be set to this
file.

The DF command also prints out the status of the system wide
switches PACK, BACKUP and CHECK.

The unit number of the task unit is set by this command and will
be whatever unit you assigned the default file to. Eg:

DFILE 6:NEWFIL.TXT

‘////// PAGE 47

or

DFILE 3:
or

DFILE .P65
NO and DO

The NO and DO commands are used to set the system wide switches
PACK, BACKUP and CHECK (pg. 21). DO will turm any of the
switches on, and NO will turn any of the switches off. For
example:

NO PACK
or
DO BACKUP

DATE

Apex maintains a system date which is used to date files as they
are created. The date is stored in a part of the directory

on each unit, but only the date on the current system unit is
used.

The system date should be updated periodically, using the DATE
command. When updating the system date, the DATE command must be
followed by a carriage return. The system will then prompt you
for a new system date. Example:

DATE
ENTER NEW DATE: 7-4-79

The Date is always in the following form: 4-~15-79.

The DATE command can also be used to change the date of a file
to the current system date. If the DATE command is followed by a
file name, the file”s date will be changed to the current system
date. Example:

DATE 2:FROG.FIL

BDIR

The backup directory is a protection feature of the operating
system. Apex maintains two separate copies of the directory on
each unit.

PAGE 48

A copy of the main directory is made in the backup directory
of a unit every time a new output file is opened on that unit.

If the normal directory is destroyed or if a file is acciden-—
tally erased, the backup directory, if it is recent enough, can
be used to restore the information.

The BDIR command reads the backup directory and displays it for
checking purposes. The command alone only reads the backup
directory for checking purposes, it does not change the real
directory.

A unit number can be appended to the command to refer to a unit
other than the task unit:

BDIR 3

With the switch /W, the backup directory will be read and
written back over the normal directory:

BDIR/W

Since the backup directory is only updated when an output file
is opened on a unit, certain units, such as system units, may
not normally have a valid backup directory. The /B switch,
used with the BDIR command, will force the backup directory
of a unit to be brought up to date:

BDIR O/B

SYSTEM

This command prints the unit number of the current system unit
or changes the system unit to another unit. The new unit must,
of course, be a valid system unit. Example:

SYSTEM
or
SYSTEM 3

SIZE

Apex can deal with wunits of any size. The size of a unit is
maintained in its directory. Sometimes a unit may not be
correctly sized for one reason or another. The Size command
allows you to check the size of a unit as in:

PAGE 49

SIZE 2
Or, it can be used to reset or change the size of a unit as in:
SIZE 2=455

Apple 5.25" floppy disks are normally 455 blocks long while the
single density 8" disks are normally 1001 blocks long.

NEW

This command informs Apex that one or more units have been
changed. It is effectively equivalent to typing Control-C while
talking to the Apex Exec.

Apex does not read unit directories unless it appears necessary.
This means that it is possible to change the wunit in a drive
without Apex knowing about it. Most often this will just cause a
bit of confusion.

Under certain error conditions Apex may try to write the wrong
directory onto a unit. TIf so it will detect a volume number
mismatch and abort the operation.

However Apex does not do a volume check on every block written,
only on directory changes. So it is possible to damage
information on a disk by changing disks at certain critical
times and neglecting the NEW command.

PAGE 50

APEX STANDARD UTILITIES

As described above, any run file can be executed simply by
typing the file name. In this way, programs can be made at act
just 1like commands. Since there are many more desirable
functions than can be easily incorporated into the operating
system, it makes sense to make some of the commands run file
commands. APEX has a number of utilities that are part of the

standard operating procedures. The wuser can also create any
utility to fit his needs.

If you have a single drive system all these utilities, with the
exception of COPY and DUPDSK, will still work. However you may
have to swap disks about somewhat. In general, when a utility
asks for a unit number on which to perform a function, you must
make sure the correct disk is in place and, if necessary, change
the disks **BEFORE** answering the question.

Here 1is a description of the standard utility programs:

SET

This utility is used to set the program specific portions of the
system page in a SAV file. It sets the file related defaults as
well as the memory use parameters. See the section on the system
page for what these parameters mean.

SET will present you with each parameter in sequence. If you
want to change that parameter, enter the new value. If the
current value is correct, you simply enter a return.

Since continually SETting a program while debugging is rather
a tedious process you may wish to include the code to load the
system page values as a part of the actual program source file.
However, be clear on what you are loading if you do this, or you
may upset the loader or its swapping exit process.

EXCH

This utility is used to copy files from unit to unit on a single
drive systems only. It workes only on the system unit. The file
to be transferred is specified in the run command line as
usual. EXCHange reads a portion of the original file into memory,

PAGE 51

disks are exchanged, and the portion is written onto the new
disk. If the file is large, it may take several exchanges to
move the entire file. EXCH keeps track of which disk should be
in the drive, and will prompt you to put the correct disk into
the drive before each operation.

When the transfer is complete, it will ask you to put in a
system unit before it reboots the operating system. Care should
be taken that the correct disk is in the drive before each
operation. Placing the wrong disk in the drive can result in the
destruction of one or more files on that disk.

SQUASH

This wutility is used to move all active files to the bottom
portion of the wunit. This eliminates any small fragments of
empty space and creates a single large empty file space.

COPY

This wutility copies one or more Apex files from one unit to
another. It requires multiple disk drives. The file name given
to COPY may be fuzzy if more than one file is to be copied. Copy
does not currently pick up the file specification from the run
command line. It requires that the file be separately specified
in response to the prompt.

BOOTER

This utility is used to update the file RESCOD.SYS to include
some modification to the Apex resident memory area and thus make
the modification permanent. It will request that you feed it a
bootable Apex disk as the master. The bootstrap will be taken
from this disk, while the resident code for Apex will be taken
from memory.

MAKER

This utility is provided to facilitate the process of setting up
a new Apple 5" mini floppy for use by Apex. The disk in question
must have been previously formatted with the routine supplied
with Apex. See the appropriate setion (pg. 7).

MAKER competely over-writes any previous disk content, and so is
used only to create valid Apex disks from formatted empty
disks.

PAGE 52

In the event that you wish to setup a disk other than a standard
Apple disk, you will have to do the operation "manually”. The
operations which MAKER does for you are equivalent to the
following steps (in sequence):

TITLE the disk.

SIZE the disk.

ZERO the disk.

Set the date.

Set the default file.

MAKE the file RESCOD.SYS=9,17

MAKE the file SCRATCH.SYS=65

MAKE the file SYSTEM.SYS=65

Use INIT to write the system onto the disk.

Use BOOTER to write the resident code onto the disk.

LOAD

This program 1is the standard Apex mechanism for loading the
binary files produced by the assembler. It will accept a list
of input files, which will all be loaded in sequence:

LOAD FROG,DOG,PIG

After the load is complete the loader will re-enter Apex at the
SAVER entry point. You can then use SAVE, SWAP, or START
commands as decribed earlier.

Unlike high 1level 1language loaders, this loader presets the
system page parameters to safe values, but does not try to
divine the "correct"” setting for them. You must set them
yourself, either as a part of the load, or by using the
appropriate Apex commands and the SET utility.

The binary loader overlays itself onto the system residual area.
Thus it cannot be used to load this area directly. It also
follows that it must force the SYSBOMB flag to TRUE, since the
Exec is indeed bombed. If the program that was loaded does not
need this flag TRUE then the flag may be reset to FALSE after
the program has been made into a SAV file.

More detail on the loader can be found in the assembler manual.

DUPDSK

PAGE 53

This simple program can be used to copy entire units from one to
another. It operates on a block by block basis without any
reference to content. DUPDSK is used when a unit oriented copy is
required, such as if you have a mix of different drives, or when
your units do not correspond to separate disks.

If you simply want to duplicate an Apple mini-floppy, the Apple
supplied dual drive disk copy is simpler because it also
transfers the formatting.

ZERO
MAKE

DIRECTORY
/L

DELETE
SAVE

OPEN N
/R

INITIALIZE
START
SWAP
GET
RENAME
CLOSE
LIST
TITLE
DFILE
DATE
BDIR
/W
/B
DO

NO

PAGE

COMMAND SUMMARY

Clears directory.
Creates a file.

Prints a directory.
Prints the long form of the directory.

Removes specified files from the directory.

Saves specified file from swap area.

54

Opens specified files for input and/or output.

Sets output file to overwrite input file.
Re-writes the operating system on the unit.

Reloads and starts the saved memory image.

Reloads the saved image and enters the monitor.

Loads a named file and enters the monitor.

Renames a file in the directory.

Unconditionally closes any open output file.

Prints the named file on the console.
Changes the unit title.

Shows or sets the system wide default file
Changes the system date or a dates a file.
Shows the backup directory of a unit.
Overwrites the main directory with backup.
Forces a backup directory to be updated.

Enables the specified system wide switch.

Disables the specified system wide switch.

name.

SYSTEM

SIZE

NEW

PAGE 55

Shows or changes the system unit number.
Shows or changes the size of a unit.

Ensures that Apex knows that you changed disks.

APEX MEMORY MAP

C000~- -\ \ \
|APEX SYSTEM PAGE I |
BF0OO- -+ | |
IRWTS DISK DRIVERS I | BOOT
B800O- -+ I | BLOCKS
| COMPAGE I
B700~ -+ [SYSTEM -+
| CONSOLE HANDLER |RESIDENT |
B480- -+ | |
I | |IRESCOD.SYS
B400- -|SYSTEM FUNCTIONS | |
I ! |
BOOO“' -+ e -t
IBYTE I/0 HANDLER | |
ADOO~ -+ [|
ACO0- |OTHER DEVICE I I
ABOO- |HANDLERS | SYSTEM |
AAQ00- —+ ’RESIDUAL | SYSTEM.SYS
! I
A800- |RUNTIME SYSTEM I I
I I |
A000- —+ -+ ! \
I | | I
9000- | I | I
|APEX EXEC | | l
8000- | | SYSTEM | |
| |SCRATCH | I
7000~ —+ |FILE / |
|[EXEC SCRATCH SPACE I |
6400~ —+ | |
|[EXEC BUFFER SPACE I |
6000~ —+ -/ |
I I
5000~ | |USER
I | PROGRAM
4000- | | SPACE
| FREE SPACE |
3000- | I
I I
2000- |} |
I I
1000- | {
I
0100- -+ |
|[USER PAGE 0 I
0050- -+ /
|APPLE ROM SPACE
0020~ -+

|VERY TEMPORARY
0000- -/

