BASIC: A MANUAL

Written by

Robin C. Soto, R. 7. Martin
and Robart Scoatt Keesney

PolyMorphic
Systems

450 Waord Crive - Sanfa Barbara Califomiq 9311 (805) 967-235

Copyright 1577, Interactive Products Corporation.

PolyMorphic Systems BASIC

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 Manual Content 2

1.2 The Examples in This r:'lanua] 4

2. GETTING INTO BASIC &
2.0 Some BASIC Fundamentals

2.1 The Keyboard and Display B

2.1 A. Giving Instructions to BASIC 7

2.1 B. Carriage Return 7

2.1 C. Interrupting BASIC 8

2.1 D. What To Do If You Make A Mistake g

2.2 Primary Elements of a BASIC Instruction 9

2.2 A, Operators 3

2.2 B. Arithmetic Operators ?

2.2 C. PRelatiomal Operators 10

2.2 0. Logical Operators 11

2.2 E. Operands 12

2.2 F. Constants 12

2.2 6. Strings 12

2.2 H. Variables 13

2.2 1. Expressions 13

Direct Statements 13

3. INFUTTING YOUR PROGRAM 16

3.1 Program Line Numbers 16

3.2 Multiple Statements Per Line 17

4, RUMNING YOUR PROGRAM 149

4.0 Control Commands 19

4.1 LIEZT 19

4.2 REN (Renumber) 21

4.3 RUN 22

-

Polymorphic Systems BASIC

4.4
4.5
4.8
4.7
4.8

Control=Y

CON (Continue)

CLEAR

SCR (Scratch)

Summary of Control Commands

5. PROGRAM STATEMENTS

2.1

5.2

5.3

5.4

Ln
Ln

5.6

General Program Statements

5.1 A. REM (Remark)

5.1 B. STOP

5.1 €. Assignment Statements fLET]

Inputting Data

2.2 A, INPUT and IRPUTI

5.2 B. DATA and READ

.2 C. RESTORE

5.2 D. Single Character Input Functions
INP{R), INP(1), INP(2)

Dutputting Data

5.3 A. PRINT

5.3 B. Formatting the PRINT Statement

Iteration: The FOR=-NEXT Loop

2.4 A, Hesting of FOR-NEXT Loops

Branching Statements

5.5 A. GOTO

5.5 B. ON=-GDTD

5.5 C. IF-THEN

2.9 D, ELSE

£.8 E. EXIT

Summary of Pregram Statements

23
23
25
25
25

26
26
2k
27
27
28
28
29
3p

31
32
32
33
38
q2
a5
35
45
a7
a8
49
49

Polym

orphic Systems BASIC

6. FUNCTIONS AND SUBROUTINES
6.1 Intrinsic Functions
6.1 A. Regular Intrinsic Functions
5.1 B. Intrinsic Functions Directly
Accessing Memory
6.1 C. Intrinsic String Functions
.2 User-Defined Functions
6.3 Subroutines
7. STRINGS AND ARRAYS
7.1 Arrays
7.2 Strings
8. THE PLOT FEATURE
9. ERROR MESSAGES GEMERATED BY BASIC
9.1 Error Messages
10. OPTIMIZING YOUR BASIC PROGRAM
Appendix A LOADING BASIC AND SAVING AND
LOADING A BASIC PROGRAM
Appendix B SAMPLE PROGRAMS
Appendix C BASIC CHARACTER SET
Appendix D 8089 MACHINE LANGUAGE INTERFACE
Appendix E COMMANDS, FUNCTIONS AND XKEYWORDS

INDEX

RECOGNIZED BY BASIC

62
ad
52
55
56
57
L
&1
&1

65

66
&6

71

74

84

105

108

113

PolyMorphic Systems BAZIC

Section 1

- INTRODUCTION

You are about to learn a very simple language. You will never speak a
word of BASIC to any human beinﬁ_ SBut the things you can do with this
language make it possible for you, with the help of your computer's
"brain", to develop programmed information with a high degree of speed
and reliability.

BASIC was originally developed in 1963 at Dartmouth College by Profes-
sors Kemeny and Xurtz, who conceived of BASIC as a computer language
simple enough to be used by beginners, yet powerful encugh to carry
out sophisticated computation.

BASIC is a machine language "interpreter" which the user may devel-
op BASIC programs. BASIC machine language is "loaded" in the com-
puter. The computer then "understands" programs written in BASIC.

The user takes a problem and a definition of the problem to the compu-
ter and develops a BASIC program. With a BASIC program,.the user de-
fines the problem and the methods for its solution once only, without
havimg to repeat the process during subsequent computations. The com-
puter, using the program, accumulates, stores and organizes the needed
information, keeping in mind the ways to solve the problem and the

problem's definition.

A BASIC program is not a static accumulation of words and symbols

(even though a program does accumulate information). A program is a
dynamic process, somewhat 1ike the continually moving parts of mo-
biles. A program is built out of parts which go tegether to form an
interpenetrating censtruction. Your BASIC manual is designed with

that principle in mind, by providing the user with a careful develop-
ment of all the BASIC parts regquired to begin knowledgeable comstruction
of a BASIC program.

PolyMorhhic Systems BASIC

1.1 MANUAL CONHTENT

BASIC: A Manual has been written to provide BASIC users at every stage
of programming proficiency with a sufficient and plainly set=forth body
of information. Basic information has been grouped into sections, each
section building upon information provided in previous sections, so
that the ngvice user may develop, section by sectien, a c¢oherent sense
of BASIC and its potential. If you do not understand some aspect in

an early section of this manual, it will be clarified by the information
contained in a later section. This manual has also been designed to
permit quick, complets referencing by the most advanced user. The
manual is arranged in 10 sections with several appendices containing
supplementary material. The next sections are:

Section 2 -- Getting Into BASIC: This section deals with the primary
elements of a BASIC program, such as deletion and correction techniques
and carriage return, and discusses direct statements.

Section 3 -- Inputting Your Program: Section 3 deals with the actual
typing of your BASIC program and provides information on program
1ine numbers and multiple-statement lines.

section 4 -- Qunning Your Program: This section discusses the various
control commands you may use when you run your BASIC program.

Section 5 -- Program Statements: The many types of program statements
you may include in your BASIC program are provided in this section.

Saction & -—- Functions and Subroutines: This section discusses func-
tigns intrinsic to Poly 885 BASIC, as well as the concept of user-de-
fined functions. Section 6 also deals with the concept of subroutines.

Section 7 -- Strings and Arrays: This section talks about the concept
af strings and arrays and how to use then in BASIC.

PalyMorphic Systems BASIC

Section 8 -- The PLOT Feature: The Poly 88 BASIC PLOT feature is
described and demonstrated in this section.

section 9 -- Error Messages Generated by BASIC: A list of error
messages generated by BASIC, along with possible causes for those
messages.

section 10 -- Optimizing Your BASIC Program: This section discusces
ways in which you can speed up your BASIC programs and fncrease their
efficiency.

Appendix A -- Loading BASIC and Saving and Leading a BASIC Program:
The proper methods for saving and loading BASIC programs and for
loading BASIC ftself.

Appendix B -- Sample Programs: This appendix contains sample
programs which demonstrate various aspects of computer programming
pertinent to your particular Poly 28 system.

Appendix C =-- The BASIC Character Set: The character set for your
Poly B8 BASIC is given in this appendix.

Appendix O -- Interfacing with the Assembler and Memory: This
appendix discusses methods for interfacing BASIC and assembly
programs. It also discusses procedures whereby the user may directly
ACCEess memory.

Appendix E == Commands, Functions and Keywords Recognized by BASIC:
A 1ist of all commands, statements, functions and keywords to be
found in BASIC is given,

PolyMorphic Systems BASIC

1.2 THE EXAMPLES IN THIS MAKUAL

The examples in this manual were typed on a Diablo Hy-Type 1620 Ter-
minal Tinked to a Poly 88 computer. Hence, the examples represent
actual computer printouts and will resemble the characters put out on
the video screen. Try the examples given with each section and many
aspects of BASIC which are not clarified at once in the text may become
clear to you through the actual process of entering-in the examples on
the keyboard.

In most of the examples, "enter” is used across from the first line of
the example. The information located on the line across from “enter”
should be typed in by the user as it appears in the example.

That section of the example marked "output" indicates the computer's
response to the "enter” section. When the "enter" section of the
example has been typed in correctly by the user on the computer’s
keyboard, type a "carriage return" at the end of the "enter" sec-
tion of the example, and the "output" will appear on the video
screen. [f you make a mistake entering the example, refer to Section

2, page 8.

REM:

You will often see the word REM appear in a program Tine in the examples.
This word indicates to the computer that a remark is to follow, not an
instruction. Everything on a program line after the word REM will be
ignored by BASIC, except to be reproduced when the program is displayed.
The comments after the REM's appearing in the examples are designed to
help elarify the examples for youw.

Poly 88 3ASIC version AB8. 4761 bytes free.
ROW

THE EXAMPLES AND THE SAMPLE PROGRAM
LISTINGS SHOWH IN THIS MANUAL WERE
PRODUCED USING A POLY 88 WITH 18K BYTES
OF MEMORY, CASSETTE AND SERIAL INTERFACES,
AND RUNMNMING POLY B8 BASIC VERSION ABY
WITH THE PRINTER DRIVER PROGRAM BPRINT
DRIVING A DIABLO MODEL 1628 TERMIWAL.

)

sLIST

18 1"THE EXAMPLES AND THE SAMPLE PROGRAM®

114 1"LISTINGS SHOWN IN THIS MANUAL WERE"™

178 1"PRODUCED USING A POLY 83 WITH 16K BYTES"
138 '"OF MEMORY, CASSETTE AND SERIAL INTERFACES,™
148 1*AND BRUNMING POLY BE BASIC VERSION AGB"

15¢ !"WITH THE PRINTER DRIVER PROGRAM EPRINT"

163 !"DRIVING A DIABLO MODEL 1628 TERMIMNAL

i

PolyMorphic Systems BASIC

Section 2

GETTING INTO BASIC

2.0 SOME BASIC FUNDAMENTALS

Have you loaded BASIC? Appendix A will show you the right way to load BASIC
into your machine, 5o that the machine will be able to "talk™ with you in
BASIC. In this process you will make arrangements with the computer and
give it BASIC to store in its "brain".

After BASIC is properly loaded into your machine, BASIC will display a
message telling you which version of BASIC has been loaded, and will tell
You that it is ready to listen to you by displaying a prompt symbol () at
the left hand side of your monitor screen.

In order to use the examples provided with this manual, the user must be
acquainted with the keyboard and display.

2.1 THE KEYBOARD AND DISPLAY

The computer keyboard works much 1ike a standard typewriter. Therz {5 a
cshift key on the keyboard which functions like a typewriter shift key,
However, most keyboards have only upper-case letters and the shift key s
used for the symbols on the upper case above the numbers and for some special

svmbols.

The character for the keys you depress will appear on the video display.
The space bar functions exactly like a typewriter space bar, save that it
makes ene blank space on the screen.

FolyMorphic Systems BASIC

2.1 A, Giving Instructions to BASIC

There are two major ways in which you may give BASIC some simple imstruc-
tions. The first of these two methods is ecalled a Direct Statement. BASIC
will execute some instructions immediately; this is the case with Direct
statements, Some eiﬁmpies of legal, acceptable forms of these instructions
are provided in Section 3.

An example of a Direct Statement: >
>
enter MPRINT 3+6
cutput 9
>
¥

Another way of giving BASIC instructions is to give BASIC a program. A
BASIC program consists of a series of statements treated a5 a uynit. BASIC
dees not execute these instructions immediately and individually. Instead,
the instructions in a program are executed sequentially when the program
"runs.®

To signal BASIC that an instruction is not to be performed immediately,
but as a part of 2 program, the instruction must be preceded by & program
line number. Section 3, Inputting Your Program, 2lse provides details re-
garding construction of a program,

Example: z
enter >1@ PRINT 3+6
»20 PRINT 34-=18
*RUN

output |
18
3
;

J.1 B. Carriage Return

To end an instruction to BASIC, type a carriage return (RETURN or RET on

-]

Polymorphic Systems BASIC

most keyboards). This tells BASIC it may go ahead and execute your in-
struction {or in the case of a program line) store it for later execution.
BASIC then returns with a prompt, indicating that it is ready for another
instruction,

2.1 C. Interrupting BASIC

Te interrupt any process in BASIC, use the Control-Y command. To make a
Control-Y command, hold down the Control key (CTRL) and type Y. If you
were typing a 1ine when you used Control-Y, BASIC will ignore that 1ine
and return with a prompt.’ If BASIC was in the process of executing an
instruction, it will stop execution and return with a prompt.

2.1 0. What To Do If You Make A Mistake

BASIC has several methods of dealing with mistakes made while inputting an .
instruction. The table below summarizes the deletion commands available
in BASIC:

To delete:

Individual characters: Use the DEL or RUBOUT key to back-
space the number of spaces vou wish
to deilete. Then retype.

Entire words: Hold down the Control key (CTRL) and
type W. This deletes one word at a
time from the current Tine. Then
retype.

Entire line: Hold down the Contral key (CTRL) and
type X. Thisz deletes the entire line
that you are typing. A& Control=Y
command may also be wsed. Control-Y
will cause BASIC to ignore everything
gn. the current line, although it
will not disappear from the screen
until the program is relisted.
After either of these commands, the .
correct 1ine may then be retyped.

PolyMorphic Systems BASIC

£.2 PRIMARY ELEMENTS OF A BASIC INSTRUCTION

The primary elements of a BASIC imstruction consist of operators and
gperands. Other elements of BASIC instructions and program 1ines are
discussed in following sections of this manual.

2.2 A. Operators

Operators consist of symbols used to perform ¢ertain gperations. These
aperations fall into three broad categories: (1) arithmetic, (2) rela-
tional, and {3) logical (or Boolean).

2.2 B. Arithmetic Operators

BASIC executes arithmetic operations in response to the following symbols,
and, if several are used in the same expression, in the order listed:

Example Symbol Operation

?

*PRINT 973 + Exponentiation. (On key-
7239 boards without this syvmbol

* a Shift=-N is used.

b

}ERIHT 7*9 2 Multiplication

3

o

>

»

>PRINT 234,.56/.8904 / Division
263,43217

>

’

*PRINT 23.8% + &£7.88 + Additian

98,97

b

»

>

»PRIMT S567.9%-58.1Z = Subtraction
511.78

>

PolyMorphic Systems BASIC

The order of execution of multiplication and division, or of addition and .
subtraction, within the same expression, is from left to right. Paren-

theses may be used to alter the arder of execution. When the parentheses

are used, operations are executed from the innermost parenthesis outward.

Example:

]
»REM SHOW ORDER OF EXPRESSION EVALUATION, AMD
»REM EFFECT OF PARENTHESES. NOTE: ORDER OF
HREM OPERATION EXECUTION SIVEN IN TABELE ABOVE.
*PRINT 3+ﬂ,-"?

3.5714286
»REM NOTE THAT DIVISION WAS DOME FIERST AS 1P
>»REM WE HAD SAID:
PPRINT 3+(4/7]

3.5714286
*REM 50 WE WOULD MEED PARENTHESES TO GET THE
>REM EXPRESSION TO BE:
PPRINT (3+4) /7

1

»REM THE SAME THING HAPPENS WITH THE EXPRESSIOHN:
PPRINT 5=3"2

-4

*REM IT WAS EXECUTED AS:

*PRINT 5={(372)

-4
“REM THE EXPONENTIATION(") WAS DOME FIRST, INSTEAD OF:
*PRINT (5-3)"2

4

»REM THIS FORCES THE SUBTRACTION TO BE DOWE FIRST.
»REM TRY SOME EXAMPLES OF YQUR OWN TO SEE HOW THIS WORKS.

2.2 C. PRelational Operators

BASIC evaluates relational operations in response to the following symbols:

Symbol Operation
= equals
< i% less than
= is gqreater than
<> is not equal to

10

PolyMorphic Systems BASIC

Symbol Operation
is greater than or egual to

L%
Ll

is less than or egual to

iy
AN

BASIC will evaluate relational operations and respond with a 1 (if true)
or a B (if false).

>
Example: enter >PRINT 10>0

output 1

>

>
enter FPRINT T>7
cutput @

b

>
enter >PRINT l44=1272
output 1

>

>

Relational operations may also be wsed fn statements in which the command
executed depends upon the result of a test operation.
Example: >

enter »X==1

>IF X>=0 THEM PRINT X ELSE PRINT "INPUT POSITIVE NUMBER"
INFUT POSITIVE NOMBER

2.2 0. Logical Operators

BASIC can solve problems in Boolean logic using the following three opera-
tors: AND, OR, and NOT. The result of a Boolean operation is always a

1 (if true) or a @ (if false).

»
Example: ' enter >PRINT 1 AND 1
output 1
>
>
enter *PRINT 1 AND 2
output a
»
3

11

PolvMorphic Systems BASIC

BASIC will also :iﬂeck the validity of a Boolean statement, returning a 1 .
{is true) or a P (if false).

Example: 3
enter >PRINT (1 AND l)=(1 AND HOT1)
output @
»
X

2.2 E. QOperands

The data wpon which BASIC performs operations are called gperands. These
operands are given to BASIC either directly, through on-l1ine input, or
indirectly, through program statements. Operands may consist of., {l} con-
stants, {2} strings (3) variables, or (4] expressions., :

2.2 F. Constants

A constant 15 a number represeénting an unvarying quantity. When BASIC
stores a number in memory, it represents it with a maximum of eight digits
plus an exponent. Therefore all numbers larger than eight digits are
rounded off by BASIC. This means that when BASIC adds the two numbers
COPPPAR + .009, it will return with the incorrect answer of SQPRPPR. In
order to represent numbers larger than 99,999,999 BASIC uses the exponen-
tial notation (or scientific notation) form (number X lﬂESJ-

Examples:
3.76E4P2 means +3.76 X 1pP° (+3.76 X 19D), or +376
_3.76E+02 means -3.76 X 19%° (-3.76 X 10D}, or +376
3.76E-P2 means +3.65 X 1972 (43.76 X .p1), or +.9376
-3.76E-p2 means -3.76 X 1972 (-3.76 X .p1), or -.0376

2.2 G. Strings

A string is a group of text characters (blanks may be included) enclosed
by quotation marks. All characters within the quotation marks will be
reproduced literally by BASIC without being processed. A string may be
represented by a string variable which must take the form of an upper case

12

PolyMorphic Systems BASIC

. letter of the alphabet optionally followed by a simgle digit, followed by
a dollar sign symbal. For example: AlS = “THIS IS A STRING: Al% IS ITS
NAME"; "THIS IS A STRING {1+1*(3+5QRT{16)))T00"

2.2 H. Variables

A variable is a user-defined name which stands for a constant, an EXPres-
sion, another variable, a string, am array, or a function. A1l numerical
variable names consist of one or two characters: an upper case letter of

the alphabet optionally followed by a single digit. A string variable

name consists of an upper case letter of the alphabet (optionaliy followed
by a single digit) followed by a dollar sign symbal (3). The same name

may be used to identify different values az long az the values they identity
are of different types. For example, it is possible to have a numeric
variable Al, a string named Al3, and functions named FHAL and FNALS.

These entities have no relationship to one another.

2.2 I. Expressions

An expression s a variable, constant, or function which may stand alene
or in combination when separated by the syvmbols for arithmetic cperators.
Example: y
enter *REM LEGAL EXPRESSIOHS
PE=A+]
P¥=C05(3)
2E=A*5+ (R+COS(4) 18)
»S1=195
.
anter »REM ILLEGAL EXPREIZIONS
rL=A4EEX
aqutput Syntax aerrcor
enter Y 2=3C05(X)
autput Syntax ercor
enter PH=A*5+(COS(3)+2)=3)
output S¥ntax error

2.3 OIRECT STATEMENTS

Certain direct statements are acceptable to BASIC for immediate execution.

13

PalyMorphic Systems BASIC

These statements are not a part of a BASIC program but may be included in .
a program as program statements if desired (see Section § =- Program
Statements). Direct statements are usually either PRINT statements or

are used in combination with PRINT statements.

Direct statements may be used to: 1) print a text string, 2) evaluate and
print an expression, 3) assign a value to a variable, or 4) directly
examine the value of a variable during program execution.

A. BASIC will directly print a string given to it in the following
form, PRINT <string=

Example: >
enter >»PRINT "THIS IS5 A STRING®
output THIS IS A STRING
}

B. BASIC may be used to directly evaluate and print expressions,
if the statement takes the form, PRINT <expressions

Example: >
enter »PRINT 3*(58,/25)
output &
e

C. A value may be assigned to a variable, and that value uwsed in a
further direct statement. These statements take the form,
<variabler=<variable, expression or string:>
PRINT <variable, expression or string=

Example: b
enter rP=]l14+3
PERINT B+2
autput &
=
»

D. A direct statement is often used to directly examine the walues

of certain variables during program execution to diagnose a
programming errcr. [t may take the form, PRINT <variable», or

14

PolyMorphic Systems BASIC

letter of the alphabet optionally followed by a single digit, followed by
a dollar sign symbol. For example: AlS = "THIS IS A STRING: AlL% IS ITS
NAME"; "THIS IS A STRING (1+1*(3+SQRT(16)))TOD"

2.2 H. Variables

A variable is a user-defined name which stands for a constant, an expres-
gion, another variable, a string, an array, or a fupction. A1l numerical
variable names consist of one or two characters: an upper case Tetter of

the alphabet optionally followed by a single digit. A string variable

name consists of an upper case letter of the alphabet {opticnally followed
by a single digit) followed By a dollar sign symbel (5). The same name

may be wsed to identify different values as long as the values they 1Hentify
are of different types. For example, it is possible to have a numeric
variable Al, a string named Al%, and functions named FNAl and FHALS.

These entities have no relationship to one another.

2.2 1. Expressions

An expression is a variable, constant, or functiom which may stand alone

or in combination when separated by the symbols for arithmetic operators.
Examplie:

enter ~REM LEGAL EXPRESSIONS
sA=AF]
*¥=CO5(3)
>I=A®L4 (R+HCOS5(4) /18)
*»51=185%
}
enter *REM ILLEGAL EXPRESSIONS
FL=A4+xk
output Synkax error
enter >Y2=3C05 (X}
output Syntax error
enter PHNEA*SE(COS[(3)+2)-3)
output S¥ntax error

2.3 DIRECT STATEMENTS

Certain direct statements are acceptable to BASIC for immediate executiom.

13

PolyMorphic Systems BASIC

These statements are not & part of a BASIC program but may be included in .
a8 program as program statements iT desired (see Section 5 -- Program
Statements). Direct statements are usually either PRINT statements or

are used in ¢ombination with PRINT statements.

Direct statements may be used to: 1) print a text string, 2) evaluate and
print an expression, 3) assign a value to a variable, or 4) directly
examine the value of a variable during program execution.

A. BASIC will directly print a string given to it in the following
farm, PRINT <string>
Example: >

enter »PRINT "THIS IS A STRING"
output THIS IS A STRING
>

B. BASIC may be used to directly evaluate and print expressions,
if the statement takes the form, PRINT <expression:

Example: (e Wy
enter >PRINT 3% (58,/25)
output &
>

C. A value may be assigned to a variable, and that value used in a
further direct statement. These statements take the form,
svariable>=<variable, expression or string>
PRINT <variable, expression or string>

Example: »
enter »P=1+3
?PRINT P+2
output &
>
>

D. A direct statement is often used to directly examine the values
of certain variables during program execution to diagnose a
programming error. t may take the form, PRINT <variable>, or

PolyMorphic Systems BASIC

it may take this form, IF <test conditions, THEN PRINT <string or
variables.

Example: 3
snter »18 REM SAMPLE PROGRAM
228 Y=T\X=5%2=X+¥\STOP
~3@ PRINT "Z AFTER 'STOF'=",Z+28
»RUN

putput Stop in line 20
enter »»IF 2Z=12 THEN PRINT "2 IS OE™ ELSE PRINT "oopsS!™
gutput Z I5 QK
enter »>CON
output I AFTER ‘STOP'= 32
>

15

PolyMorphic Systems BASIC

Section 3
INPUTTING YOUR PROGRAM

Every BASIC program consists of a series of program lines containing pro-
gram statements. BASIC will not accept a line of more than 64 characters.
Each program 1line is given a program 1ine number so that BASIC will not

try to execute it immediately but will wait until execution of the entire
program is requested by the programmer. At that time BASIC will execute

the pragram lines in numerical order. This section deals with the actual
typing in of your BASIC program. It contains information about line numbers,
and program 1ines.

3.1 PROGRAM LINE NUMBERS

Every program line begins with a line number which must be an integer rang-
ing from P to 65535, inclusive. Any line of text typed te BASIC which be-
gins with a number is processed by the editor as a program line. Blanks .
or tabs before the line number are ignored by BASIC, and the first blank
or nondigit that follows a line number terminates that 1ine number. Lines
do not have to be typed im sequence --they will be performed in ascending
numerical order when the program is executed. When they are listed thoy
will be listed in numeyrical order. An error §5 generated if the 1ine num-
ber is not between @ and 65535, if the program line is too long, or if
memory would overflow if BASIC accepted the new 1ine. Error messages are
then gemerated, and no other action is taken by BASIC on that line.

The techniques for adding, replacing and deleting program lines are listed
below:

A. Adding a new line to a program: Type in a new program line number
followed by your imstructions to BASIC. Remember that 1ines do
nat have to be typed in numerical sequence. The new line will be
accepted if the line number i a legal one, and at least ane
character follows the line number in the program line. .

15

PolyMorphic Systems BASIC

B. Replacing an existing program line: Type in the program line number
of the program line you wish to replace. Then type the program
statements you want on that program line. BASIC will replace the
original program line with your new program line of the same
number.

C. Deleting an existing program line: Type the program 1ine number
of the program line you wish to delete. Then hit carriage return.
If a new program line contains only a program line number, BASIC
will delete any pre-existing program line beginning with that same
program 1ine number.

Example: o
enter »19 %=1
»28 E=2M\Y=3
30 PRINT X+¥+Z
»4@ PRINT X+Y
*RUM

output L
4
enter >449
*LIST
output 18 X=1
28 Z=2M\Y=3
3@ PRINT X+¥+2Z
anter *>RUM

output B
>
>

3.2 MULTIPLE STATEMENTS PER LINE

Multiple program statements may appear on a single line if they are separated
by a back-slash () (Shift-L, on some keyboards). A line number must
appear only at the beginming of the line. If cne program line ¢alls for a
jump to another program line, BASIC will be able to return to the proper
point in that branching program line, even if that branch statement 15 on

a multiple statement l1ine.*

*Beanching” takes place when you transform program execution to another
program line. Branches can be conditional, dependent upon a test condition

17

PolyMorphic Systems BASIC

Example: >
enter >
»118 x=1\A=X+1%GOSOB Z2888\PRINT A
>
After calling the subroutine at Tine 2PPP in response to the GOSUB statement,
BASIC, after finishing the subroutine, will return to the proper point in

line 11Q; that is, to the PRINT A statement.

or unconditional. Go to section 5, for examplesz of branching statements.

13

PolyMorphic Systems BASIC

Section 4

RUNNING YOUR PROGRAM

4.0 CONTROL COMMANDS

Mow that you have learned how to set up a program, you want to know how
to run it, ton. This section discusses the control commands you cam use
to rum your program.

These commands also directly affect the execution of the BASIC program,
or its representation in memory. The control commands which enable the
programmer to save and load the BASIC program differ depending on the
method of loading and saving a program, see Appendix A--Loading BASIC,
and 3aving and Loading a BASIC program.

4.1 LIET

The 1ist conmand 15 used when the programmer wishes to see a BASIC

program listed on the screen. The LIST command may bBe typed im the following
form:

LIST <ppticnal line number=,<gptional line number:

If the Tine numbers are not supplied, the entire program'is displayed.

If the first 1ine number is provided, the program is listed from that

line number to the end of the program. I[f both 1ine rumbers are supplied, the
program is displayed from the first line number given to the second Tine
number, inclusive. If both optional 1ine numbers are the same, just that ane
Tine of the program will be dizplayed.

19

PalyMorphic Systems BASIC
»
Examples: enter >12 REM SAMPLE PROGRAM
»15 X=1
»20 Y=2
»25 PRINT X+Y¥Y
>
>
- *
enter >LIST enter »LIST 15,25
putput 18 REM SAMPLE PROGRAM output 15 X=]1
15 X=1 20 Ym2
28 ¥=2 25 PRINT X+¥
25 PRINT X+¥Y *
>
b >
enter >LIST 2@ enter >*LIST 15;15
output 28 ¥=2 output 15 X=1
25 PRINT xX+Y »
>

An error messadge will
greater than the last

Example:
enter

output
enter
autput

result if you try to Tist a program line number
lTine of your program.

’
]

»19
»28

REM SAMPLE
=1

>33 ¥=2

»49 PRINT X+¥
*LIST 54

Line number £Fror
*»LIST 28,58

Line mumber srror
o

-
20

PolyMorphic Systems BASIC

4.2 REN {Renumber)

After you have made many insertions in a program, the line numbers often
become very unevenly spaced. To renumber your program lines and even out
the differences between 1ine numbers, type REN followed by the optional
beginning value, and then the optional increment value. The command takes
the form, <REN optional beginning value>, <optional increment value>.

A11 of the program lines will be renumbered by that command. If the first
optional value is not supplied, BASIC will begin the program with a line
number of 10. If the second optional walue is not supplied, the program
will be renumbered by am increment of 10. Both of the values supplied must
be positive integers,

Examples: 3
> >REM
> »LIST
»18 REM SAMPLE PROGRAM 1@ REM SAMPLE PROGRAM
»12 INPUT X 28 INPUT X
*»78 PRINT X+l 30 PRINT X+l
]]
2 >
*REN 58 *REN 188,122
*LIST 2LIST
28 REM SAMFPFLE PROGRAM 1899 EEM SAMPLE PROGRAM
68 INPUT X 289 INPOT X
78 PRINT xX+1 108 PRINT X+1
> >

When you renumber a program, BASIC will automatically renumber the Tine
numbers referenced within a program line.

Example: .+or 510 REM SAMPLE FROGRAM

»2@ IWPUT Z
>33 IF ZI»=@ THEN GOTO 58
»44 PRINT "GIVE A POSITIVE #"\GOTOD 20

*58 PRINT "Z=",E

enter »REM S0 ,58
- *2LIST
putput 58 REM SAMPLE PROGRAM
188 INPUT Z
153 IF Z»=3 THEN GOTO 2539
20@ PRINT "GIVE A POSITIVE #"\GOTO ld0
250 PRINT “Z=",T

21

FolyMorphic Systems BASIC

Caution: If & Tine number referenced within a program i5 not a2 valid
1ine number, it will not be renumbered. However, if you renumber the program,
it might become a valid line number with unpredictable results.

Example: »>18 INPUT I
28 IF Z:>=§ THER GOSUBR 3844

>3@ PRINT "TRY AGAIN WITHK POSITIVE #“\GOTO 1@
>»HEN 1608¢,1088

sLIST
1888 IMPUT 2

2088 IF I>=0 THEN GOSUB 3920
3608 PRINT "TRY AGAIN WITH POSITIVE §"\GOTO 1889

4.3 RUN

To begin execution of your program, type RUN followed by a carriage return,
and BASIC will begin execution at the first 1ine in your program. If you
follow RUN with a 1ine number, BASIC will attempt to begin execution at

that 1line number in the program, and will generate an error message if th.-
line number does not exist.

>
Example: enter >RUM 5000
cutput Line number error
7
If no line number is supplied, BASIC will begin program execution at the

beginning of the program.

NOTE: If you are just learning BASIC, it iz nmot important that you understand
the following paragraph right away. H.Ft_E'r‘ you have read the entire manual,
and written a few programs, re-read this section.

When you give BASIC the RUN command, & number of things happen before
program execution actually starts. The first thing that is dome is to clear
the variable and string areas. This means;
1) that all numeric variables, the first time they are referenced will
have the value zero {although it is not a good programming practice.
to assume this)

2e

PolyMorphic Systems BASIC

2} that all- strings are set to mull (length of zero)., and
3} unless initialized by a DIM statement, both strings and vectors
{arrays) will take on the default size of 1P elements.

Mext, the random number generator is reinitialized. This means, that unless
the random number generator is given a new seed ([see section 6.1 on the RND
function for details), the same sequence of random numbers will be generated
every time that program is executed.

The pointer used to access DATA statements for READ (see section 5.2 b on
the DATA and READ statements) is set to the beginning of the program. BASIC
then checks user defined functions (see sectionB.2) to see if each function
15 properly defined, and that sach multi-line function has an end. Errer
messages may be generated if there are errors in any of the user defined
functions. Then BASIC begins executing the program at either the line
number specified with the RUN command, or at the first line of the program.

4.4 Control-¥

To interrupt the execution of yvour program, hold dawn the Contrel (CTRL)

key on the keyboard, and type ¥. The Control-Y command interrupts any
process in BASIC. To continue execution of the program, the continue command,

COM., must be used.

4.5 CON {continue)

The continue command, CON, enables the programmer to continue executian

of a program after an interruption due to a STOP statement in the program,

or a Control-Y command used during program execution. Type CON after a prompt
to continue. An attempt to use CON when there are no program lines, when the

program has been modified after the interruption, or when CLEAR has been used

to ¢lear variable and strings, will result in an error message.

23

PolyMorphic Systems BASIC

>
Example: enter »18 REM SAMPLE PROGRAM
»2@ XA=w1\IMPOT “Y¥7?=--",¥"S5TOF
»3@ PRINT "Y+1=" X+¥
*4@ PRINT "¥=",Y
*RUM

output Y¥7--589.45
) Stop in line 28
>>CON
Y+l= 598.45
Y= 589,45
x

When the CON command is used to continue after a 3TOP, the program
execution begins at the statement after the STOP statement. When the
CON eommand is used to continue after an interruption caused by Control-Y
command, program execution is continued after the statement interrupted

unless that stafement was an INPUT command. In that case, execution .
resumes at that INPUT command.

b
Example: enter >18 REM SAMPLE PROGRAM
328 X=1%INPUT "¥?--",Y\PRINT "¥+l=", X+Y
*3@ PRINT "yY=",Y¥
*RUN

output ¥?--345,6y (Control-Y command used here)

Interrupted in line 29
>>C0ONH

Y?-=345,67

Y+l= 346.67

Y= 345.67

;

Mote that in the above examples a double prompt (»>) appears after an
interruption. This indicates that BASIC can continue execution of the
program. The double prompt will continue to appear until BASIC can no

longer continue execution after modification in the program, use of tLEﬂR,.
etc., at which time it will be replaced with a single prompt (=).

24

PolyMorphic Systems BASIC

4.6 CLEAR

After program execution it is often necessary to “clear® all variables

and strings: that is to reset them to their original initialization within
the program. This avoids any possible cumulative effects of executing a
program more than once. Use of the CLEAR command sets all input variables to
f, and all input strings to a null value.

4.7 5SCR (Seratch)

The command SCR, typed after a prompt, erases all information in working
memory; your program and its data.

4.8 Summary of Control Commands

CLEAR Resetz all input variable values to ¢ input
strings to null walue.

CON Resumes execution of a program after a 5TOP or an
interruption.

Control-¥ Interrupts any process in BASIC, inc¢luding program

execution. Returns a prompt to the user.

LIST Lists program. Takes the form, LIST <optional
line number=, <optional line number:,

REN Renumbers program lines. Takes the form REN
optional beginning value>, <optiomal increment wvalue:,

RUN Begins execution of a program either at the beginning
of the program or at the pptionally suppliied line
number. It takes the form, RUN <optional line
number:=,

3CR Erases the program, and anything else typed from
the terminal.

25

Polymorphic Systems BASIC

Section 5

PROGRAM STATEMENTS

Program statements are by far the most important part of BASIC. Pro-
gram statements make up the instructions which BASIC will follow when it
executes a program.

This section of your manual covers the statements in BASIC under several
different headings:

1) General program statements

2) Program statements used to input data

3) Program statements used to output data

4) Program statements involved in FOR=-NEXT loops

5) Program statements used to alter program execution.

For sample demonstrations of program statements, see Appendix B--
Sample Programs.

5.1 GENERAL PROGRAM STATEMENTS

The three program statements wsed very commonly throughout any program
are discussed below: 1) REM remark, 2) STOP, and 3) Assignment State-
ments, LET.

5.1 A. REM (remark)

The remark statement allows the programmer to add comments to the pro-
aram witheut those comments being processed by BASIC. A REM statement
may be placed anywhere on a program line, since everything to the right of
it, including the letters "REM" are ignored by BASIC. BASIC will, how-
ever, print the REM statement when the program is listed. The REM state-
ment, unless it is the first statement on the program line, must be pre-
ceded by a back-slash (™).

26

PalyMorphic Systems BASIC
5.1 B. STOP

The STOP statement is inserted im a program whenever a peérmanent or re-
coverable halt is desirable. To continue execution from a STOP, use
the continue ¢ommand, CON described in section 4.5.

5.1 L. Assignment Statement {LET)

An assigrment statement is used to set a variable to a given wvalue or

expression. The wusual form g <variablex= <constant, variable or ex-

pression>, for example: A=19. Using this example, the variable "A" is
set equal to 19. The expression on the right can be more complex. In
any case, the expression on the right is evaluated and assigned to the
variable on the Teft.

Example: .

enter >1@ A=1329
»28 B=12
»38 C= ASB+18.2
»4@ BRINT C
»>RUN

output 128.2
> A

There are two major types of assignment statements; one for numerical
variables as in the examples above, and a second type for string varia-

bles.
Example: ;LIET
anter 18 AS="HOT FUDGE"
28 PRINT AS
3@ E&=" BSUNDAE ®
48 PRINT BS
58 PRINT AS+ES
6@ PRINT BS+A%
*RUN

gutput EOT FUDGE
SUNDAE
HOT FUDGE SUNDAE
SUNDAE HQT FUDGE
-

27

PolyMorphic Systems BASIC

The optional keyword, LET, may be used to indicate an assignment statement. .
Its use is not encouraged since it is only a mnemonic device and takes up
unnecessary space on a 1ine. The following examples are identical in
meaning.

Example: 5

enter >h=X+1
>*LET A=)+l
}

5.2 INPUTTING DATA

The following section discusses the various program statements used to
make data available to the program. Data may be made accessible either
through direct input from the user terminal (INPUT and INPUT1) or in-
directly from the program itself (DATA, READ, RESTORE).

5.2 A. INPUT and INPUT1

The INPUT and INPUT] statements are used to ask for data from the user
terminal. A guestion mark is printed by BASIC to prompt the user of
the program.

Example: 5

enter >18 INPOT X5
»28 PRINT "THE WORD IS:"™,x5
*RUN

output PME
THE WORD IS5:ME
>

An optional input string may be used as a prompt to the wser, in which
case no question mark is printed by BASIC. If more than one varfable is
asked for in one input statement, they must be separated by commas.

Exampie: 5

enter >18 INPUT "GIVE ME TWO NUMBERS--",X,Y
280 PRINT "THEIR SUM IS: ",X+Y
~RUN

output GIVE ME TWO MUMEERS--2.5,5.89
THEIR SUM IS: B8.39
>
>

28

PolyMorphic Systems BASIC

The INPUT] statement acts in the same way as an INPUT statement, except
that the usual carriage return echo is eliminated. This has the effect
of leaving BASIC on the same 1ine as the input, so that the next input
prompt, or message printed by a PRINT statement will appear on the same
line as the first INPUT1 statement.

: »
Example: 5

enter SLIST
12 INPROT "YOUR HAME?" , NS :
28 INPUT1 "GIVE TWO WUMBERS--",5,51
3@ PRINT ™ HI,",N$
49 PRINT * THE SUM IS: ",5+51
»RON

cutput YOUR NAMEZROBIN
GIVE TWDO NUMBERS--345.78,89%96.51 HI,ROBIN
THE SUM IS: 1242.29
T
>

2.2 B. DATA and READ

The DATA and READ statements are used to ask for data from within the
program itself. The DATA statement comtains within it the actual data
that the program uses during execution. The DATA statement may contain
gither string or numerical data. The data must be separated by commas,
and strings must be enclosed by quotation marks. The data in the DATA
statement are read by the READ statement, and must be consistent with
the type of variables (mumerical or string) used in the READ statement,
or an error message will be generated.

When the first READ statement in a program is encountered, a pointer is
set to the first piece of data in the first DATA statement in the pro-
gram. Every time a READ varjable reads one piece of data, the pointer
advances to the next piece of data. As all data from the first DATA

are read, the pointer advances to the first piece of data in the next
DATA statement, and so on, until all READ variables have been matched
with data. If there are more data than needed, the remaining unread
data are ignored. If, however, there are fewer data than there are

29

PolyHorphic Systems BASIC

READ variables [that is, the pointer is out of data), an error message .
will be generated.

Examples: 5

enter >188 READ A,B,C\PRINT "A,B,C:
»200 READ X,Y,ZW\PRINT "X,Y,Z:
>398 DATA 1,2,3,188
488 DATA 239,388
>RON

output A,B,C: 1 2 3
X,¥,2: 108 208 380
>

>

enter >18 READ AS,BS,CS5PRINT AS5.B5,CS
>28 PRINT C5,A5,BS
>38 DATA ™" WE ","™ ARE "," HERE "
>RON

output WE ARE HERE
HERE WE ARE

7

>

5.2 C. RESTORE

A RESTORE statement allows the programmer to change the order in which
READ statements access DATA statements. Use of the RESTORE statement
enables the programmer to direct a particular READ statement to a parti-
cular DATA statement. The RESTORE statement takes the form, RESTOURE
zgptional line number>., Without the optional Tine number, the READ
statements would be directed to begin reading data from the first DATA
statement in the program. With the line number included, the READ
statements would be directed to a DATA statement on that or a following
line.

Example: i
enter »>18 READ A,B,C\PRINT "A,B,C: ",A,B,C
»2@0 RESTORE L
333 READ X,Y,IN\PRINT "X,Y,Z: rk X2

*>49 DATA 1,2.3
»5¢ DATA 108,209,394

60 DATA 5,6,7
>RUN

output A,B,C: 1 2 2
X,¥,2: 1223

»
30

PolyMorphic Systems BASIC

Example (continued):
>
enter >18 RESTORE S@
>2@ READ A,B,C\PRINT "A,B,C:",A,E,C
>38 READ X,¥,Z\PRINT “X,¥,Z:",X,Y,2
48 DATA 1,2,3
»58 REM READ DIRECTED TO THIS LINE
+6@ DATA 199,209,300
»78 DATA 5,6,7
*EUN

F

output A,B,C: 109 280 380
K:.¥,21 5 6 7
>

5.2 D. Single Character Input Functions INP (). INP (1), INP (2)

The functions INP (B}, INP (1), and INP {2) allow the user to test for
characters in the input buffer, and input single characters from the
keyboard. The function INP (B) returns § if there are no characters
waiting in the input buffer to be read. INP (1) returns the integer
value of the next character from the kevboard buffer, without echoing

it to the ‘screen; INP (2) returns the integer value of the next character
from the keyboard buffer and echoes it to the screen (3ee appendix €

for decimal values for the character set).

Example: enter 18f REM DEMONSTRATE INP({#) TESTING FOR INPUT
118 PRINT "YOU HAVE 18 SECOMDS TO TYPE COW"
128 PRINT *7?7%,

138 Z=TIME(8) % REM RESET CLOCHK

148 IF INP(@)>d THEN 198 % REM SOMETHING TYPED
154 IF TIME(1)<1@*69d THEN l40

168 REM TOO LONG. COMPLAIN

178 PRINT "...TOO LATE, YOU DIDH'T TYPE COW"
188 GOTO 118

199 INPUT "",AS\ IF AS="COW" THEN 218

288 PRINT "YOU DIDN'T TYPE COW"™\ GOTO 118

218 PRINT "THANE YOU."

*ROR

cutput ¥OU HAVE 18 SECONDS TO TYPE COW
?...TOJ LATE, ¥YOU DIDH'T TYPE COW
YOU HAVE 14 SECONDS TO TYPE COW
?EROG
YOoU DIDN'T TYPE COW
¥OU HAVE 19 SECONDS TO TYPE COW
FCOW
THANRE ¥OU.
>

kY|

PolyMorphic Systems BASIC

(Note: characters are stored inside the computer as numbers. See Appendix .
L, the BASIC Character Set.)

EXample: 133 pew pgE INP(2) TO FIND DECIMAL VALUES OF CHARACTERS
1184 PRINT "TYPE A CHARACTER, AND I'LL TELL ¥QU ITS WALUE"
1238 PRINT 2.
130 A=INP(2)\PRINT " IS A DECIMAL".A
148 GOTO 118
*RUN

TYPE A CHARACTER, AND I'LL TELL ¥Y0U ITS WALUE
?A IS A DECIMAL &5
TYPE A CHARACTER, AND I'LL TELL YOU ITS VALODE
TH IS A DECIMAL 72
TYPE A CHARACTER, ANWND I'LL TELL ¥YOU ITS VALDE

2?7 IS5 A DECIMAL 55
TYPE A CHARACTER, AND I'LL TELL YOO ITS WALUE

? IS A DECIMAL 7
TYPE A CHARACTER, AND I'LL TELL YOU ITS VALDE

? (Control-Y command used here)

Interrupted in line 138
e

5.3 OUTPUTTING DATA

There are several ways of changing the format of data output by a pro=-
gram. A1l of these involve the use of PRINT statements. This section
will briefly outline the use of the free-format PRINT statement, the

use of the TAB function in formatting data, and the use of format strings
to set up data formats.

£.3 A. PRINT

The PRINT statement prints out the one or more elements in its print 1ist.
The elements must be separated by commas. If there are no elements in a
print 1ist, that is, if the word PRINT is alone on a line, BASIC will
print an empty line. PRINT statements will evaluate and print expres-
sions {including intrinsic functions) and variables. A string in the
print 1ist is printed as given, but without the su;"ruunding guotation
marks.

Example: > '.
enter >19@ PRINT "RUBBER CHICEEN" ,SQRT(1d@3) ,2+2

»15% PRINT “SECOND LINE™
»RON

QuUIput ==52@ next page-- »
K;

PolyMorphic Systems BASIC
Example (continued):

output RUEBBER CHICKEN 19 4
SECOND LINE
>

>

enter >10 !"RUBBER CHICKEN",SQRT(188),2+2
»>15 I"SECOND LINME"
»RUON

output RUBBER CHICKEM 18 4
SECOND LINE
»

In order to save space on the pregram 1ine, the word PRINT may be ab-
breviated to an exclamation mark symbol (!), as in the above axample.

IT the last element in the print 1ist is5 followed by a comma, a car-
riage return is not printed, and the output of the next PRINT statement
of INPUT statement will appear on the same line as the original PRINT
statement output. If the ocutput of a PRINT statement is too long to
fit on the current monitor output Tine, it will be continued on the next
line with no carriage return being generated. The PRINT statement

may take the form, PRINT <print 1ist>. The print 1ist may contain
strings, variables or expressions, all separated by commas, with strings
being surrounded by quotation marks.

E.3 B. Formatting the PRINT Statement

If no formatting is specified in a PRINT statement, the data is printed
in the default free-format style. In the free format, all data in the
print Tist are printed left justified with the prompt symbol, and all
numerical elements are printed and separated hy a blank. Unless a
specific format is given by the programmer, BASIC prints all numerical
data in the default format given belaw,

33

PolyMorphic Systems BASIC

The Default Format

(For a discussfon of exponential form, or scientific notation,
cee Section 2.2 F, Comstants).

1. Numbers less than or egual to eight digits in length
and in non-exponential form will be printed as given.

Example: 5

enter SPRINT 12.34567
output 12. 34567
>

2, Humbers greater than eight digits in length and in
non-exponential form will be rounded off to eight
significant digits and printed in standard exponen-
tial form.

Example:

enter >PRINT .0B8123456789
output 1.23456709E=-03
>

3. MNumbers in exponential form less than or equal to
gight digits in length will be printed in non-ex-
ponential form if doing so would result in & number
of efght digits or less. Otherwise, the number is
printed in standard exponential form.

Example: .

gnter »PRINT 123.45E+45
output 1234594849
=
enter >PRINT 123.45E+36
autput 1.2345E+08
>
¥
enter »PRINT 123.456E-@5
output LBELZ34506
5

4. Numbers in exponential form greater than eight digits
in length are rounded off and printed in non-expo- .

it

PolyMorphic Systems BASIC

nential form if doing so would result in a number
of eight digits or less. Otherwise the number is
printed in standard exponential form.

Example: 5

enter >PRINT 123,4567891FE+86
autput 1.2345679E+688
>

>
enter >PRINT 123,4567B91E+85S
output 12345679

}

a8

The TAB function provides a way to space putput across the screen. The
TAB statement takes the form PRINT TAB(expression), <print list>. TAB
evaluates the expression within its parentheses and moves over that dis-
tance across the screen befare printing the elements in the print list.
The TAE value must be less than 256 and positive.

Example:

enter »18 PRINT TAB(15),"UNIT ONE®,TAB(25),"UNIT TWO",
228 PRINT TAB(35),"UNIT THREE"
>38 PRINT TAB(l9),"A",TAE(29),"B",TAB(39),"C"
>RUN

output ONIT ONE UNIT TWO UMIT THREE
A B C

Fermat Strings

Format strings specify the manner in which numerical data may be out-
putied by a print statement. A format string may appear amywhere in a
PRINT statement after the PRINT command, and must begin with a per cent
symbol (%). An empty format string will allow data to be printed in free
format. The form of a PRINT statement with a format string iz, PRINT
<optional unformatted print list>, %<optional format characterss <optional
format specification>, <print Tist to be printed in specified format>.
More than one format string may appear in a PRINT statement. An example
of a PRINT statement containing the format string C$3I, is the followina:

35

PolyMorphic Systems BASIC

PRINT "ME," %C331, 345445867.

A. Format Characters

[Places commas to the left of the decimal point as
needed.

b3 Places dollar sign symbol to the left of the value
printed.

FA Eliminates trailing zeros.

#§ Sets the format string of which it is an element to
the new default format for printing numerical data.

Example:
%
enter >PRINT %C5Z,456789B87.59024a9
output 545,678,988
2

The format character, #, sets a new default format. This means that if
the format string ¥Cif is encountered in a PRINT statement, all unfor-
matted numbers in the program after that statement will be printed in
that format. To restore the default format to the original, free-for-
mat style, the null format string is used (%#,) either with or without
a print list. After the null format string is encountered in a program,
the default format reverts to free format.

Example:

enter 1@ INI®IN NEW DEFAULT FORMAT--"
20 PRINT %5C#,9999
3@ FOR I=2888 TO 5208 STED 14448
48 PRIMNT TAE(32),1.
5@ NEXT
6@ !WI1"RESET TO OLD DEFAULT FORMAT--"
7@ PRINT %#,9999
8@ FOR I=2g98 TO 5948 STEP 1228
90 PRINT TAB(38),I,
128 MEXT
»RUN

output IN NEW DEFAULT FORMAT--
$9,999

§2,0088 §$3.,000 F4.000 55.E-EE.
RESET TO QLD DEFAULT FORMAT--

29339
2089 3888 4902 5880

>
38

PolyMorphic Systems BASIC

B.

Format Specifications (for numerical data only}

The format specifications (similar to those in FORTRAN)
specify the format in which numbers will be printed on the
screen. In the specifications below:

n = number of spaces in the field in which the data are to
be printed. The 1&ft margin of the field is even with
the prompt symbol. n must be less than or equal to 25.

m = number of digits to be placed to the right of the deci-
mal point. (However, if m B, all digits past the
eighth will be zeros).

F-format: The F-format prints numbers right justified in

a field n-characters wide, with m digits to the right of
the decimal point. This specification takes the farm,
<n=F<m>.

Example:

:-
enter >PRINT %15F5,3798.6788992
output 3798.67892
»

[-Format: The I-format specification prints only integers
(if a non=-integer is entered, an error message will be
generated). The numbers are printed right justified in a
field n-characters wide. This specification takes the
form, <n>I.

Example:
-
enter >PRINT %1@I,2345
output 2345
>

E-Format: The E-Format specification prints numbers right

justified in an n-character wide field in scientific nota-
tion with m digits to the right of the decimal point.

37

PolyMorphic Systems BASIC

Example: 5

enter >»PRINT %190E3,3798.678392
output 31.799E+23
;3

Note: The number 3.799E+D3 represents 3.799 X 153.
{For a further discussion of scientific notation,
or exponential form, see Section 2.2 F, Constants).

Example: £
enter >PRINT 3.799E+83
output 3799
>
In order to avoid format specification errors, it is important
to remember to reserve enough space in the print Tield by use
of a large ensugh n so that the number given to the format
specification may be printed. For example, in the example
below, 11 spaces must be reserved in the print field if m = 5.
((significant digit, decimal point, m, and the four characters
E,+,8,2)= 11 spaces); otherwise an error message is generated.

Example:
»
enter >PRINT %18ES5,234.56
output PFormat error
enter >»PRINT %11E5,234.56
output 2.34360E+82
>

5.4 ITERATION: THE FOR-NEXT LOOP

Often in writing a computer program to solve some problem, we find that
we would 1ike to perform a certain set of statements a number of times
perhaps, for a certain set of arguments.

Let's say that we wanted to print the integer from 1 to 1P inclusive, and
their squares. We could write a BASIC program that would execute this
process, and would look like this:

38

Example:
b

enter >»188 REM THIS PROGRAM IS A LOOP
*»118 J=1
»128 IF J»1¢ THEN GOTO 168
»138 PRINT "THE SQUARE QF ",J," = ", J"2
>1480 J=J+1
>158 GOTO 128
*>16@ PRINT "END!"
>RUN

When we run this program, the variable J is set to 1 by line 118. Me
then see if J i3 greater than 18. The first time through, J has the
value of 1, 5o we continue execution with line 139, where we print the
value of J, and J sgquared EJE}. Then we add 1 to the current value of
J, and go back to the IF statement on line 12p. We "loop" through
Tines 12p, 13p, 14 and 159 until J is incremented by line 149 to the
value 11. Then, when we perform the IF statement on line 129, J is
greater then 19, so0 we go to line 169 thus terminating the loop.

This “loop" can be thought of as the combination of a number of elements:

1) The "loop variable" J, in the example above, which takes on the values
1 through 1@ in the loop.

2} The starting value for the loop variable. In the example, the start-
ing value for J is 1, as set on line 119.

3) A terminating condition; in the example, the loop will terminate, or
stop, when J is greater than 1P, as detected by the IF statement in line 12p.

4) An increment (or decrement) to apple to the loop variable: In the
example an line 148, we add 1 to the value of J each time through the
"laop”, so that during the process of the computation, J takes on the
values 1,2,3,4,5,6,7,8,9 and 1.

5) A set of statements that are executed repeatedly, also called the
loop body. In the example, the loop body consists of the single PRINT
statement on lime 13P.

&) An indicator marking the end of the loop. In the example, the GATO

12@ statement on line 15§ denates the end of the loop. When the variable

J exceeds the terminating condition, 1P, as specified by the IF test on

line 128, program execution will resume past the end of the loop, at line 160,

39

PolyMorphic Systems BASIC

We could write out this set of statements each time we wanted to execute

a statement or set of statements repeatedly, but this would be time con- .
suming and give us more chances to make programming mistakes. However,

this process of "looping,” or iteration, is done so often, that BASIC has

a shorthand way of specifying this procedure, with more flexibility, using

two statements: FOR and HEXT.

A program equivalent to the one given at the start of this section, but
using FOR and NEXT looks 1like:

>

>18@ REM FOR-MEXT LOOP

#ll@ FOR J=1 TO 18 STEF 1

»12@ PRINT "THE SQUARE OF ",J,"
5138 NEXT J

>RUN

LA i

Let's go through this new program, and identify the same six elements we
did in the previous program:

1} The "loop variable." In this case, the loop variable is still J,
which appears just after the word FOR on Tine 11f. In general, the .
loop variable immediately follows the word FOR in a FOR statement,
and cannot be a string variable (such as J3; that would be illegal),
ar have a subscript (such as D{3); that too would be i1legal).

2) The starting value. Above, in the FOR statement, we see MJ=1,"
which gives the starting value for the loop, 1, just as in Tine 113
of the previous program. This starting value can be any expression,
and is evaluated only once, at the beginning of the loop.

3) The terminating ¢ondition. We see in the program above, using
FOR and MEXT, on line 119, the characters "TO 19." This gives
the terminating value to test the loop variable (J in this case)
as 19, just as it did in the IF statement on 1ine 12P of the other
program. The terminating value, in this case the number 1@, can
be any arbitrary numeric expression. It is important to remember,
howaver, that this expression is only evaluated ONCE, at the start
of the loop, and not every time through.

4} An increment {or decrement) to apply to the loop variable. Im the '.
other program, this was specified in line 149, where we said J=J+1,
incrementing J by 1 each time. In the FOR statement the increment

40

PolyHorphic Systems BASIC

is specified by the part of the line that says "STEP 1"; defining
the increment to be 1. This number also may be any numeric ex-
pression, and is only evaluated once; at the start of the loop.

5) A set of statements to be executed repeatedly. In the example
using FOR and NEXT, the "loop body" is the single statement on
line 129, the PRINT statement.

6) An indicator marking the end of the loop. In the first example,
the "loop body" was the single PRINT statement on line 138. In
the case of the FOR NEXAT loop, the FOR and NEXT statements clearly
show what statement or statements will be repeateds that iz, any
statements that come between the FOR and the NEXT.

The FOR=NEXT statements, then, define the same process and set of elements
that we identified in the first case. Yet they provide a quicker, more con-
cise way of specifying a sequence of statements to be repeatedly executed.

The FOR-NEXT loop 2lso allows us more flexibility, and "hides" the "house-
keeping" functions required by the loop we had to specify in the initial pro-
gram which used the IF statement. Some of the things the FOR-NEXT loop allows

us to do are:

1} If we do not give an expression "STEP <exp>" where <exp> is an
arbitrary numeric expression, a default step of 1 will be used.

2) The values for the initial value, terminating value, and step
zize do not have to be integer, or positive. For example, the

statement
188 FOR W=-1 TO.-2@ STEP -1

would perform some set of statements 29 times, with the variable
W taking the values -1,-2,-3,-4, to =-20.

3) The statements in the loop body may be performed zero times, once,
or indefinetely, depending on the conditions and step size chosen.

4) We do not have to specify the variable name on the NEXT statement,
although this is quite helpful for debugging (in fact, specifying
the variable name slows things down!).

41

Polymorphic Systems BASIC

5.4 A. MNesting of FOR-NEXT ‘Loops

Often we would Tike to have an iterative (looping) process going on
"inside" of another iterative process. It is perfectly valid to have
ane FOR=HEXT loop "inside" another=-with the.follﬂwing restriction:
the "inside" loop must be totally contained within the “outer" loop.

Exampie: 5

enter >LIST
1@ REM NESTED LOOPS

20 FOR J=1 T2 12

i 3a FOR K=1 ™0 19

!Em PRINT E+({J-1)}*18.".".
58 MEXT K

68 PRINT

e T8 HEXT J
»RUN

3RS s P RS T S e A Tt 1 I

QUtPUt l.]-,r 12; 13; 141 15r 15! :I-'-III.II]-E; 15! zﬁi
21, 22, 23, 24, 25, 26, 27, 28, 29, 38,
31, 32, 33, 24, 35, 36, 37, 38, 39, 49,
41, 42, 43, 44, 45, 46, 47, 48, 493, 58,
51, 52, 53, 54, 55, 58, 57, 58, 59, &0,
61, 62, 63, 64, 65, 66, 67, 68, 63, TE,
215 73 FAL T4 75,006 Ty 18,009, 8d;
81, &2, B3, 84, 85, 86, 87, 88, 85, 90,
91, 92, 93, 94, 95, %6, 97, 98, 95, 1l@d,

This program prints a 1ist of numbers from 1 to 19@. The "inner” loop,

as shown above, consists of lines 3P, 49, and 59, while the "outer"

loop consists of lines 20 and 7. The number of nested loops is restricted
only by the amgunt of available memory. To see how many FOR=NEXT Toops

you may nest on your machine, refer to Sample Program, NEST. in Appendix B.

42

PolyMorphic 3ystems BASIC

The following examples show some of the possibilities with FOR HEXT loops:
some of these examples show correct usages, others show errors, and what

BASIC's response will be.
Examples:

>
enter »>183 EEM MORMAL LOOQP
*118 FOR I=1 TO 19 STEP 1
»12@ FRINT I.".".
»138 MEXT I
*RON

output 1, 2, 3, 4, 5, 6, 7, &, 9, 18,

>
enter 1d8 REM WE DONT NEED TO SPECIFY STEP
iEE REM OR HEXT VARIAEBLE.
8 FOR W=l1 TO 1@“PRINT wW,","®
115 NEXT e
*RIOM

OUtDUt :.]'-f 2? 3! 4" -Ef E‘p ?F ai- g; -IE;

enter >138 REM IMNITIAL VﬁLuE; STEPR, FINAL -
>118 FOR B=.2 TO 1.2 STEP 3 e e L
>128 PRINT E,
»138 MEXT E
>128 PRINT E,",*,
2RUN

qut.l'.':-IJt. ..1; .5; +Bi -II--|-1,|l

-
enter >118 REM USING NEGATIVE STEP VALUE
»12% FOR E=l@d TO 1 STEP =1
»138 PRINT E.",",
»148 WEXT
¥RUN

Dutput }lﬂl 9; ﬂf ?; 'Ep 5f 'E.! 31 'E-f]'i

42

Polymorphic Systems BASIC

Examples:

enter

autput

enter

output

enter

output

enter

output

enter

output

>

>18 REM NEGATIVE NUMBERS
15 POR W=-1 TOQ -11 STEP -1
>28 PRINT W,",",

»25 HEXT

>RUN

=1, =2; =3, '4-! =5, =6, -?r =5, =%, =19, =11,
>

>

>148 REM FOR HEXT LOooP ALL OM OHE LINE

»11@ FOR I=1 TO 18 % PRINT I,",", % NEXT

>RON
1, 2, 3, 4, 5, 6, 7, 8, 3, 18,
-
>
188 REM ERROR-NC NWEXT STATEMERT

»118 FOR I=1 TO 1@Q

>RUN

11 FOR I=1 TO 1868

(]
FOR=MEXT error

>

194 REM ERROR-WRONG VARIABLE ON NEXT
»118 FOR J=1 TO 144

»128 HEXT Q
*RUN
128 MEXT

4
FOR-MEXT errcor
>
=

»189 REM ERROR=-STRING VARIABLES
»114 FOR IS="OQNWE® TOQ "THREE"
*128 NEXT

*RUN

114 FOR I$="ONE" TQ "THREE"

Typa error
]

44

Polymarphic Systems BASIC
5.5 BRANCHING STATEMENTS

It is often desirable to alter the wsual order of program Tine execution.
Branching statements are those statements which enable BASIC to jump

to other program lines. This jump may be based on the result of a test
condition (conditional branching) or simply be a direct branch
{unconditional branching). Most of these statements are frequently

used in combination with one another.

5.5A. GOTOD

The GOTO statement allows the programmer to transfer execution to
another program line. The GOTO statement takes the form, GOTO<line

number:.

Example:

enter .

19 REM PRINTS SQUARE ROOT QOF X

»20 INPUT1 "A NUMBER?--",X

»~3@ PRINT " SQUARE ROOT OF ",X," IS: ",SQRT(X)
>48 GOTO 18

*RUN

output A NUMBER?--34 3QUARE ROOT OF 34 IS: 5.8399519
A NUMBER?--56 SQUARE ROOT OF 356 IS5: 7.483314%8
A NUMBER?-- (Control-Y command used here)
Interrupted in line 29
>3

Note that the program above is an infinite loop, and must be
interrupted with a Control-Y command.

6.5 B. ON-GOTQ

The ON-GOTO statement allows multiple branching from one program line
to many others, depending upon the value of the variable specified.
The ON-GOTO statement takes the form, ON<variable or expression=GOTO
<program line number(s)=. If the expression or variable after ON
evaluates te a 1, the first Time number listed after the G0TO will be

45

Polymorphic Systems

Jumped to by BASIC.

number listed will be taken, and so on.

BASIC

If the expression evaluates to a 2, the second Tline
Expressions are truncated to

an integer; 1.1 evaluates to a 1.

Examplie: 5
enter »>1@ FOR X=1 TO 3

*20 ON X GOTO 34,58,78
»>38 !"X EQUALS ONE"
>48 GOTO B84
>58 1"X EQUALS Twa"
68 GOTO 88
»78 1"X EQUALS THREE"
»88 MWEXT
*RON

Mote that in the following example, when ¥ is negative a jump is made
into program Tine number 29, when X equal B a jump iz made to line 48,

& EQUALS ONE
X EQUALS TWO
X EQUALS THREE

]

and when X is positive a jump is made to line 69

Exampie:

enter >1p

(See Section &, Functians and Subroutines for an explanatd

SGN fumction.)

>28
>3@
>48
»>54
>6@
>74a
*RUN

?=56
LINE
*RON

78
LINE
»RUON

?456
LINE
>

INPUT X\ONW SGN(X)+2 GOTOQ 28,44,68

FRINT "LINE 28: X IS MEGATIVE"
GOTO 78

PRINT "LINE 48: X IS ZERO"
GOTO 7d

FRINT “LINE 68: X IS BOSITIVE"
STOP

20: X IS5 NEGATIVE

48: ¥ IS ZERD

68: X IS POSITIVE

46

en of the

Polymorphic Systems BASIC

[T the expression after ON is less than 1 or greater than the number of
program 1ine numbers listed after the GOTOD, BASIC will generate an error
message.

Example: 5

enter >LIST
12 FOR X=1 TO 4
20 OM X GOTO 38,498,592
18 I™YOU'RE CLOSE"\GOTO 64
48 !®"YOU'RE WARMER"NGOTO &4
5@ !"¥YOU'RE HOT!™
6@ MEXT
*BUN

‘fﬁl] 'RE CLOSE
YOU'RE WARMER
YOU'RE HOT!

28 ON X GOTO 34,40,50
.*-

Out of bounds error
-]

5.5 C. IF-THEN

The IF-THEN statement is used to set up a test condition which must ba

met before further instructions within the IF-THEN statement can he
executed, The IF-THEN statement takes the form, IF<test condition>THEN
<legal IF-THEN clause», The test condition may compare variable to
variable, variable to expression, string to string, etc. Legal IF-THEN
clauses include: 1) GOSUB<subroutine lime number>, 2) RETURN, 3)GOTO
<line number>, 4] PRINT<print list>, 5) ON<variable or expression>GOTO
<line number>, &) STOP, or 7) <variable>s<variable, expression, or strings.

Example:

enter >1@ INPUT "WANT TO PLAY? ",AS
»28 IF AL="HO" THEN GOTO 5@
»30 REM ASSUMES ALL INPUT OTHER THAN 'NO' IS '"YES'
»4@ I"HERE ARE INSTRUCTIONS..."\GOTO &0
>5@ !"0.K. CATCH YOU LATER"

»68 REM END OF PROGRAM
*RUN

output == sSee next page

47

Polymorphic Systems BASIC

output WANT TO PLAY? YES
HERE ARE INSTRUCTIONS...
*RUN

WANT TO PLAY? HO
O.K. CATCH YOU LATER.
>

»

>

The TF-THEN statement may parform multiple commands as a result of the
test condition. The multiple commands must be written on the IF-THEN
statement program line, and separated by back—alaghesx{‘\}.

Example: 2
*SCR
enter >18 INPUT "GIVE ME A NUMBER--",X
28 IF X=1 THEN ["RIGHT ANSWER"%!"GO ON!"N\GOTO 288
»38 !"X WOT EQUAL TO OWE™
»280 1"THIS IS THE END!"®
*RUM

GIVE ME A NUMBER--3
£ NOT EQUAL TO OHNE
THIS IS5 THE EHND!
>RUN

GIVE ME A HUMBER--1
RIGHT ANSWER
GO Oun!

THIS IS TEE EHND!
N

5.5 0. ELSE

An IF-THEN statment may also optionally include an ELSE statement.
The ELSE statement includes a Tegal IF-THEN clause, and may also
include another IF-THEN statement. If either the THEN clause or
the ELSE clause is a simple GOTO, then the word GOTO may be omitted.

Example: 3

enter >18 IF X>3 THEM PRINT *"X»3" ELSE GOTO 282

enter »>14 IF X>3 THEM PRINT "X>3% ELSE 288
»

43

Example: 5

enter >IF 1=1 THEN PEINT “OHE® ELSE PRINT "O0QPS!"

output ONE
*>
»

enter >18 AS="YES"\X=8 *
328 IF AS="YES" THEN IF X=0 THEN !*"GO!" ELSE !"WRONG
>RON

G0o!
>
’

5.5 E. EXIT

The EXIT statement i identical to a GOTO except that it should be used
when branching out of a FOR=NEXT loop. This is because it terminates
the active FOR loop and reclaims the associated internal stack memory.
If an EXIT 15 not used when branching cut of a FOR=-NEXT lcop, the
internal stack could become full and result in a control stack error
message,

Example;

enter >18 X=3
324 FOR I=1 TO 1@4da

>389 FOR J=1 TO l0d8@

>48 PRINMT I1,J

»58 IF X=3 THEN EXIT 248
>68 HNEXTWHEXT

>288 PRINT "END"

>RUN

T §
END
>
>

.6 SUMMARY OF PROGRAM STATEMENTS
DATA Contains data for program execution accessed by READ.
Data must be separated by commas, and may be either

nenerical or string in type. S5trings must be enclosed
in quotation marks.

43

Polymarphic Systems BASIC

ELSE Used in canjunction with IF-THEN statement. IF<test .
condition>THEN<12gal IF-THEN clause=EL5E<legal IF-THEN
clause or additional IF-THEN statement>.

EXIT Similar to GOTO statement, but should be used when

branching out of a FOR-MEXT leop to avoid stack full
BIrror.

FOR=-NEXT Sets up lToop within program. Loop is repeatedly
executed until specified terminal value s passed by
variable given in FOR statement. Unless specified,
variable is incremented by +1. FOR<loop variables=
<initial value>TO<terminal value>STEP<optional step
values,

GATO Unconditional branching statement, transferring program
execution to specified 1ine number. GOTO<Iine numbers.

[F=THENR IF<test condition>THEN<legal IF-THEN clause or additional
IF-THEN statement>. Execution of statement after THEN
depends upon fulfiliment of test condition.

INPUT Inputs data from user of program. May include optional
input string as a prempt. Otherwise, INPUT prompts
program user with a question mark. [NPUT<optional
prempt string=, <string or numerical variables,

INFUT1 Identical to INPUT except that carriage return echo
{after user input) is eliminated, so that next PRINT
or INPUT statement appears on the same line as ariginal
input.

LET Optional assignment statement. LET<variabler=<variable, .
E:pre§siun, ar string>.

&0

Polymorphic Systems BASIC

ON-GOTD A conditional statement allowing a branch to a
specified line number if a test condition is met.
If the variable or expression equals 1, a branch to
the first line number listed is taken; if the
variable or expressionm equals 2, a branch to the
gsecond 1ine number listed is taken, and so on.
ON<variable or expression>G0TO<]ine numbers.

PRINT Prints data specified in the print 1ist. The print
1ist may contain elements which are wvariables, 5trings:
or expressions, all separated by commas. PRINT will
evaluate and print expressions and variables, and
print literally (not evaluate) strings. A format
string (Section 5.3 B) or a TAB (Section 5.3 B) may
be included with a PRINT statement to format output.
PRINT<optional format string or TAB(expression)>,
<print Tist>,

READ Used in combination with a DATA statement to access
the data contained in a DATA statement. READ<variable
Tist>.

REM Used to place comments within the program. Must be the

last statement on a program line, and preceded by a
back-slash unless it is the first statement on the Tine.

REM=<comments>.

RESTORE Used to change the order that a READ statement accesses
data from a DATA statement. May optionally include a
line number of a particular DATA statement. ODtherwise,
the READ statement following RESTORE i35 directed to
begin reading data from the first DATA statement in
the program.

STOP BASIC halts execution of a program when it reaches a

STOP statemant.
51

PolyMorphic Systems BASIC

Secticn &

FUNCTIONS AND SUEROUTINES

It 15 often desirable to perform one section of a program more than
once during the execution of a program. Rather than type this section
over and over at various points throughout the program, BASIC has

some rather ingenious ways of more efficiently structuring your program.
These are: functions and subroutines.

6.1 INTRINSIC FUNCTIONS

some commonly used functions have been incorporated into BASIC as
intrinsic functions. One of these functions may replace many lines of
program statements. The intrinsic function may be used as part of an
expression (for example, Z=COS({SQRT(X)*75/100)) or may stand alone [for
example, PRINT SIN(X)}). The intrinsic functions of BASIC are listed
below:

6.1 A. Pegular Intrinsic Functions

SORT{expressicn) Returns the positive square root of a positive
expression. An exprezszion less than 8 will
result in an error mescage.

EXP{expression) Returns the value of e (2.71828...) raised to
the zpecified power.

LOG(expression) Returns the natural logarithm (base e} of
the expression.

COS{expression) Returns the cosine of the expression in radians.
52

PolyMorphic Systems

SIN{expression)
ABS{expression)

INT{expression)

SGN(expression)

RND{expression)

BASIC

Returns the sine of the expression in radians.
Returns the absolute value of the expression.

Returns the nearest integer which is less thanm

the expression.

Returns 1, 0, or -1 if the sign of the
expression is +, 0, or -.

Returns a random number greater thanm @ and Tess
than 1. BASIC generates a sequence of numbers
that are randomly distributed, based on a given
"goad" valuye. Where one enters this sequence
when using the RND functiom depends upon the
expression (seed value) given to the RND function.
The seed value must be greater than ar egqual to
B but less than 1. If the seed value iz @ a
point in the sequence of random numbers is chosen
depending upon the last random number produced,
and a random number i5 produced. The next time
that RND(@) ic called within the same program,
the next number in the sequence is produced, and
so on. If the seed values are the same the next
time the program is run, an identical sequence
of random numbers will be produced. This is
important if the programmer wishes to repeat
exactly & simulation of & random process. A
non=-zero Seed value will always produce the

same random number. For example, RND(.1)

always gives .164P0625.

23

PolyMorphic Systems

Exampie:
b

enter >LIST
REM SIMULATICN OF THROWING OME DIE
Z=RMD(TIME(1)/65536)% REM RANDOMIZE

FOR I=1 TO 18

D=INT(RND({A)*6)+1% REM DIE VALUE SUCH THAT B<D<7
PRINT "YOUR THROW IS",D

-Iea
118
1z@
138
148
158
>RUN

YOOR
¥YOUOR
YOUR
YOUR
YOUR
YOUR
YOUR
YOUR

TYOUR
YOOR
ey

HNEXT

THROW
THROW
THROW
THEROW
THROW
THEREOHW
THROW
THEOW
THROW
THROW

BASIC

To completely randomize the RHD function
for every use of the program, the following
statement is suggested: RND{TIME(1)/65536).
This provides seed values based upon the
current value of the real time c¢lock.

To produce random numbers greater than number A
and less than number B, the following expression
should be used: (RND{B)*(B-A)}+A

The RND function is often used in combination
with the INT function to produce random integers.
The statement INT(RHD(@)}*6)+1 simulates the roll
of one die, giving numbers between 1 and 6
inclusive.

IS
IS5
IS
IS
IS
IS
IS5
Is
Is
I5

kot B3 B o LA B O RA B

PolyMorphic Systems pasic

TIME (expression] The TIME function returns as its value the 16
bits of the POLY 828 real time clock, which is
incremented every 1768th of a second. The
exprassion in the TIME function must evaluate
to & value greater than or equal to @ and less
than 65636, If the expression does not evalu-
ate to P, the current value of the real time clock
iz returned. [f the expression is 3, the
TIME function returns the current value af the
real time clock and sets the timer to @; this
is useful for recording elapsed times. Since
only 16 bits of the timer are retumed, the
value returned by the TIME function will cycle
BYEFY [Elﬁ}fﬁﬂ seconds (1092 seconds = 18.2
minutes). Longer timing periods may be measured
using the PEEK and POKE features to manipulate
the most significant bytes of the real time
¢clock. See programs in Appendix B. Sample
Programs, for examples.

Example: =
enter > PRINT TIME(1)
autput 924
>

6.1 B. Intrinsic Functions Directly Accessing Memory and the SQ8P Sysitem

{%ee Appendix D, Interfacing with the Assembler and Memory, for a full
explanation of the use of these fumctions). MNumbers in intrinsic
functions must be decimal. Therefore, all hexadecimal numbers must be
converted to decimal numbers before using them as arguments in intrinsic

fumctions.

INP{E3RA port) This function allows the programmer to perform
an 38p IN instruction from the specified port.
Ports 9 through 31 (decimal) are reserved for
the system. The statement !INP [8B) tells

55

PolyMorphic 3ystems

FREE(D)

QUT BREP port,
gxpression

POKE memary byte,
expression

PEEK(memory byte)

BASIC

you what value is in the 8pth port of the Poly B8.
IFREE(®) prints the number of bytes available

in memoiry.

This instruction allows the programmer to
perform an 58P OUT instruction fﬁ a specified
port. For example, OUT 49,3 perfnrmé an OUT
4P instruction with 3 in the SP8@ accumulator.
Ports @ though 31 (decimal) are reserved for
the system.

This function allows the programmer to fill the
specified byte in memory with a given expression

value. For example, POKE 38P9,J0+3 will £il1 @
memory byte 3989 with the value J+#3. This

function should be used with caution, since

improper use may wipe out portions of BASIC.

This function allows the programmer to examine
the value being held in the specified memary
byte location. For example, !PEEX(3P88) will
tell you what value is in memery byte 3P£P.

6.1 €. Intrinsic String Functions

(See Section 7, Strings and Arrays, for a discussion of strings).

LEN(string
variable)

Returns the number of characters in the specified
string. Example:

enter >18 A3S="PICKLE"\PRINT LEHM.’.
*RUN

output &
1) »

PolyMarphic Systems

VAL(string variable)

STRS{expression)

ASC(string variable)

CHRS{expression)

6.2 USER-DEFINED FUNCTIONS

BASIC

Returns the numeric value of a numeric
string if the string doesn't contain blanks.

Example: 5
enter 2PRINT VAL("123")
output 123
>

Returns a string with the specified numeric
value. Example: .

enter >PRINT STRS (234)
output 234
>

Returns the decimal representation of the
AECII code for the first character in the
string specified. 3See Appendix C, The
BASIC Character Set, to find the ASCII code
in BASIC.

Example: .
enter »SSange
*PRINT ASC(535)
output 83
>

Returns a string specified by the expressian.
The expression is a decimal representation
of the ASCII code.

Example: \
enter *PRINT CHR3 (83)
output 5

>

BASIC allows prograsmers to define their own multi-line functions or

one-1ine functions within a program. The fumction nams beging with the

¥

PalyMorphic Systems BASIC

letters FN followed by a legal string or numeric variable name. If the
function is a one 1ine function, the definition takes the form,
DEF<FN<legal variable name>(arquments)=<function>. This is a one-line
function, for example: OEF FMAL(A,B)=A+B. The arguments of the
function (A and B) are local to the function definition. That is, their
values are not affected outside of the execution of the function. There-
for, when the function iz ealled upon during program execution, the
arguments of the function call are substituted in for the Gy arguments
of the function definition. For this reason, the number of arguments

in the function definition must always equal the number of arguments in the
function call, or an error message will be generated,

Example:

enter >LIST
l¢ I"USE CONTROL-Y TO EXIT" .
20 DEF FNS1({A,B)=A+B
38 INPUT1 "GIVE 2 NUMBERS-——",X,Y
48 I® THEIR SUM IS: ",FNS1(X,Y)
58 !™ THE ABSOLUTE VALUE OF THEIR SUM I5: ",ABS(FNSL(X,Y¥))
68 GOTO 38
>RUN

output USE CONTROL-Y¥ TO EXIT
GIVE 2 NUMBERS--4,-56 THEIR SUM IS: -52
THE ABSOLOTE VALUE OF THEIR 3UM IS: 52
GIVE 2 NUMBERS--34.78,-567 THEIR SUM IS: =532.22
THE ABSOLUTE VALUE ©OF THEIR SUM IS: 532,232
GIVE 2 NUMBERS== (Control-Y command used here)
Interrupted in line 3@
>
-

If the wser-defined function is a multi-line function, the first line of
the function takes the form DEF<FN<legal variable name>{arquments). The
Tines following that statement form the definition of the function. The
last line of the function definition must be the statement FNEND, to indi-
cate the end of the definition. A multi-line definition must return a

=
-
b

PolyMorphic Systems BASIC

wvalue. This is dome by using & RETURN statement with the variable or
constant to be returned. The RETURN statement informs BASIC when exe-
cuting the function that computation is over.

Example: >

enter >18 DEF FNA(X,.Y.Z)
228 IF Z=1 THEH RETURMN X
238 KeY¥*Zi4ye3
*48 RETURN X
»5@8 FHEHNWD
268 A=]N\B=2“C=A+R
»70 PRINT FWA(A,E,.C)
~RUY

output]
>

In the example above, note again that the variable names in the function
definition are local to that defimition: when the definition is called
later, the variable names used in the call are completely different fron
those in the function definition. The function definition amd call must
anly contain the same ﬁumber and type of wariables. Functions must be
defined within the program only once, and a definition must exist for
gach user-defined function called in a program.

6.3 SUBROUTINES

Subroutines are used in much the same way as user-defined functions.

Their purpose is to allow the programmer to define a section of the pro-
gram which may be used again and again during program execution to per-
form a desired function. The GOSUB statement is used to ¢all the subrou-
tine. Execution of the program is transferred to the program line speci-
fied in the GOSUE statement. This line is the beginning of the subroutine.
The end of the subroutine is indicated by a RETURN statement. When BASIC
encounters a RETURN statement, it returns te the program statement after
the GOSUB statement. BASIC then goes on with the rest of the program.

29

FolyHorphic Systems BASIC

Example:

o

enter *13 INPUTL "GIVE POSITIVE #: “.X
»28 IP X>»¢ THEM GOSUR 288 ELSE 147
»30 REM REST OF PROGRAM
@ 3TOP
*58 REM SUBROUTIME MEXT
»20@ " SQUARE ROOT OF YOUR®
»21@ '"HUMBEER IS: ",S50RT{X)
*»228 RETUEN
*RON

gutput GIVE POSITIVE §: 358 SQUARE ROOT OF YOQUR
HUMEER I5: 18.8679583
Stop in line 448
>

Care should be taken that program execution not be allowed to "fall into"

the subroutine. For example, in the above program, if the S5TOP statement .
at Tine 49 is removed, the subroutine is executed twice -- once when called

in the GOSUB statement, and once when BASIC moves on to line 28R from line

39. This situation results in an error message being generated by BASIC,
since BASIC finds two RETURN statements, but only one GOSUB statement in

the program.
Example:
enter > 48

»LIST
18 INPUT1 "GIVE POSITIVE #: ".X

2@ IF X»8 THEN GOSUB 280 ELSE 14
32 REM REST OF PROGRAM

5@ REM SUBROUTINE HEXT

288 1" SQUARE ROOT OF YOURT

218 1"HUMBER IS: ",SQRT(X)

228 RETUEN

2ROH

output GIVE POSITIVE #: 569.234 SQUARE RCOT OF YOUR

NUMBER IS: 23.858625
SQUARE ROOT OF YOUR
MUMBER 15: 23.858625 .

228 RETURN

*.
RETURM without GODSU0B errcor
-

a0

Section 7

STRINGS AND ARRAYS

Two of the more advanced elements of a BASIC program are strings and
arrays. They have been incorporated into ome section in this manual
because, in many ways, 2 string can be treated in the same manner as
an array. EBoth strings and arrays consist of a series of elements,
which may be indexed by the use of subscripts.

7.1 ARRAYS

An array 15 a list of numerical items which may be represented by a le-
gal variable name and indexed by a subscript of that variable. For ex-
ample, the list (1,2,3,4,5) may be represented by the variable X. The
first item in the Tist would be referenced by subscript B (written X(#)).
Note that subscripts denoting a pesition in an array begin with Bp. The
csecond jtem would be referenced by the subseript 1 (X(1)), and so on.

The subscripts may, in turn be represented by a variable (X(I)).

3
2LIST

enter 19 REM PRINT OUT ARRAY IN REVERSE ORDER
289 X{B)=18%K(1)=20\X(2)=30X(3) =42 X (4) =50
39 FOR I=4 TO @ STEP =1
48 PRINT X(I)
58 NEXT
2RO

Exampie:

cutput 52

4

ig

28

ieg

»

If an array is not assigned a certain length within the program, it i3
assumed that it consists of one dimension, and not more than 1P elements.
To reserve more space than this in memory, the dimension statement is
used. This takes the form, DIM<variable array name>(number of items).
For example, DIM X(52@). An array may be dimensioned only once in a
pragram. An array may contain more than one dimension. For example,

the following table is a representation of a 2-dimensional array.

=

£l

PolyMorphic Systems BASIC

Array X(1,0): J =) 1 2 3
I= 5 1p 11 12 13

1 14 15 16 17

2 13 14 2 21

2 22 23 24 2%

The position X(3,2) contains the number 24. A sample program to print
this array would be:

Example: 5

enter >10 DIM X(3,3)
280 FOR I=8 TO 3\FOR J=@ TO 3
>38 READ X(I,J)\PRINT X(I,J),
>48 NEXT\PRINT
»>58 NEXT
>680 DATA l18,11,12,13,14,15,16,17,18
>7@0 DATA 19,20,21,22,23,24,25
*RON E

output 16 11 12 13
14 15 16 17
18 19 2@ 21
22 23 24 25
o

Although we are not able to represent more than two dimensions in this
matrix form, more than two dimensions may be assigned to an array. The
number of dimensions is Timited only by available memory space. Each
item 1in an array takes up five bytes of space,

7.2 STRINGS

A string is a list of characters (such a 115t may also contain blanks)
surrounded by quotation marks. [f you put anything in gquotation marks,
BASIC will think it's a string. Quotation marks tell the computer to
reproduce whatever information is contained within the marks. A string
is represented by a string variable, which is any legal variable rame,
Tollowed by a dollar sign ($) symbel; such as "AlS."

62

PolyMorphic Systems BASIC

Strings may be dimensioned to a particular length by use of the DIM
statement. Unlike arrays, strings may consist of anly ane dimemnsiaon.

If no length 15 assigned to the string, room is reserved for only 13
characters {including blanks). Any string consisting of more than 19
characters is truncated to 19 characters unless a DIM statement is used.
The amount of space reserved by a DIM statement is Timited only by avail-
able memory space.

The dimension statement for a string takes the form, DIM <string variablex
(number of charcters). For example, DIM AS(3D), reserves space for 3P
characters on the string AS. A string may be dimensioned only once with-
in a program,

Referencing a string element by use of subscripts differs somewhat from
the method used on arrays. When referencing string elements, subscripts
begin at 1: f.e., the first character of string S§ is S5(1,1).

Example: Given string 5%:

55(J) refers to the substring beginning at character position
J through to the end of the string.

S5(J,K) refers to the substring beginning at character position
J through character position K.

$5(J,J) refers to character at position J.

It is possible to concatenate substrings and strings using the additiomal
symbol, +. [If the conbined strings or substrings are larger than allowed
by the program DIM statements, they will be truncated to fit.

Examples: 5

enter »13 REM STRING INDEXING
>20 DIM TS5(12})
r3d TS="TACKY-"
48 ITS(I)NITS (2,400 T5(3,3)
50 TS=T5+T5\!T5
>RUN

output =--see next page--

&3

PolyMorphic Systems
Example (continued):

outpyt CEY-
ACK
o
TACEY-TACKY--
*

Strings, substrings, and string variables may be used in combipation
with LET, READ, DATA, PRINT, IF and INPUT statements. The IF statement
does produce alphabetic comparisons when the relational operators are
used.

&
Example: enter 194 IF Z5+BS<"SMITH™ THEN 58

>
When string variables are used in a INPUT statement, the input must not
be surrounded by gueotation marks. When strings are found in DATA state-
ments, they must be surrounded by quotation marks.

PolyMorphic Systems BASIC

section &
THE PLOT FEATURE

The PLOT statement allows the BASIC programmer to use graphics
characters to display data. The statement plats data on the video
screen on a 128 by 48 grid. The "origin® of the display grid is the
lower left hand corner of the screen, and is addressed as point (9.D).
The X-axis of the grid runs horizontally across the display (left to
right), from P to 127 and the Y-axis of the grid runs vertically up
the display (bottom to top) from B ta 47.

To plot data using the PLOT statement, the following form must be used,
PLOT X,Y,Z. The X is any user-selected variable or expression chosen as
the X-coordinate of the plot and Y is the Y-coordinate of the plot. 7 is
an arbitrary expression -- it will plot the point as a bright spot if Z

is odd, and as a dark spot if Z is even. The X-coordinate and Y-coordinate
must reference points which are actually on the display grid -- for this
reason, they must be greater than 8. In addition, X must bBe less

than or equal to 127, and Y must be less than or egual to 47.

After a point is plotted, the cursor position moves to that point of the
screen. The next PRINT or INPUT statement will then appear at that spot.
This is useful for arranging input prompts on the screenm, and for formatting
cutput text.

For demonstration of the PLOT feature, see Appendix B -- Sample Programs.

PolyMorphic Systems BASIC

Section 9
ERROR MESSAGES GEMERATED BY BASIC

If you make an error using direct statements, BASIC will respond with

a simple error message. If an error i5 encountered during execution

of the program statements, BASIC will reprint the program line in which
the error occurred and point to the approximate paint in the Tine contain-
ing the error. An error message will also be printed.

3
Example: enter »¥=3* [SQRT(16)+¥CLEPT)
output Syntax error
b

enter >1@ ¥=3*(SQRT(16)+¥CLEPT)
>RON

output 18 ¥Y=3*(SQRT(16)+¥CLEFT)
.-'-
Syntax error
b

The error messages that you might receive are listed below along with
their possible causes.

9.1 ERROR MESSAGES

Arg mismatch error
Humber of arguments in user-defined function definition was not
equal to the number of arguments listed in function call.
Example:

epter »lB8 DEF FNX(X)=X/ 194
28 PRINT FHX({1l,2.,3)
»ROM

output 28 PRINT FHX(1,2.,3)

™
-Arg mismatch error
£

&G

PolyMorphic Systems BASIC

Bad argument error
May occur if a parameter given to the PLOT functiom is out of
bounds (for example, if X>127 or ¥=47).

Can't continue

BASIC has been asked to continue execution of a program but cannot
do =0, either because no program exists, or because the end of the
program has already been reached. BASIC alse will not continue
execution if a4 change is made in the program after am interruption,
or if a CLEAR command has been used. After an interruption, BASIC
indicates that it can continue with a double prompt (»=}. If it
cannot continue, BASIC réeturns after an interruption with a single

prompt (=).

Checksum error
A checksum error is the result of a tape loading problem. When
loading BASIC, a question mark may indicate a checksum error. When
loading a BASIC program, a checksum error will be indicated by a
checksum error message. A checksum error indicates either an incor-
rectly loaded program or tape damage of some kind.

Complexity error
An expression is too complex for BASIC to evaluate.

Cantrol stack error
An internal stack has overflowed, possibly through using too many
functions which call upon themselves.

Dimension error
Incorrect dimensioning. For example, redimensioning an array or
string within a program, or using a variable as an arqument in a
DIM statement (i.e., DIM X [A)).

67

PolyMorphic Systems BASIC

Division by zero érror
An attempt was made to divide a variable or expression by B.

Double def error
An attempt was made to define a user-defined function twice within

on program.

Format error
Several causes, all having to do with incorrect outputting of
data. For instance, a format error may occur if an attempt is made
to print out a number in the F-format in a field of greater tham 25
spaces. Uswal cause -- ingorrect format string.

FOR-NEXT error
Happens if improper nesting of FOR-MNEXT loops occurs. Other
possible causes include incorrect loop index, MEXT variable, STEP
value, Tgop index initial or terminal value, or mismatched FOR
and MEXT variables.

Function def error
Attempt was made to use an undefined fumction.

[Tlegal direct error
Attempt was made to use a statement not acceptable as a direct
statement. For example: [See section 2.2 -- Direct Statements)

3

enter »>GEOTO 188

cutput Illegal direck errorc
>

Input error--retype
An attempt was made to input a string where a number was asked for,
ar vice versa,

B8

PolyMorphic Systems BASIC

Length error
The last line entered exceeded 64 characters.

Line pumber error
An attempt was made to reference a non-existent program line.

Memary full error
No more memory space is available. May occur when infinite loop
allowed to run uninterrupted. For example:

>

ente-p >1a GOsUE 19
~RUN

putput 18 GOSUB 14
+
Memory full error

>
Missing HEXT error
There are not enough NEXT statements in the pragram to match the
FOR statements.

Qut of bounds error
Possible causes include a program 1ine number greater than acceptable
(»65536), or an attempt to dimension an array larger than memory will
hold {(DIM X{5PRPR)).

Qverflow error
An attempt was made to evaluate an expression too large for BASIC to
represent. For example:

enter zFEIHT I*197 64

autput Owerflow error

READ error ?
Mot enough data in DATA statement, or data was noet in praper form
(constants or variables, depending upon type of variable in READ
statement).

a9

PalyMorphic Systems BASIC

RETURN without GOSUE error
A RETURN statement was found without an accompanying GOSUE state-
ment in the program.

Subscript error
An attempt was made to use a nonexistent subscript, or a subscript
larger than allowed by DIM statement. For example:

entar *1@ DIM X(5)N\1X(28)
*ROW

sutput 19 DIM X({5)\1X(2@)
: T
Subscript error

Syntax error »
There are many, many pessible causes for syntax error. In general,
a syntax error is a typing error (1.e., PRIMPT X). Incorrect form
of program statements i3 also a cause (i.e., IF ¥=p GOTO 209 (no
THEN)).

Type error
An attempt was made to use a string function on a numerical variable
or vice versa. For example, PRINT SORT (A%), attempts to use a
numerical function an a string variable.

Verify error
This error may occur when verifying a BASIC tape. The error message
indicates that the tape 95 invalid: the pragram in mémory has been
changed, the tape has been incorrectly saved, or the tape has been
damaged.

0

PolyMorphic Systems BASIC

Fection 10
OPTIMIZING YOUR BASIC PROGRAM

This section provides some techniques for optimizing BASIC programs;
either making programs more efficient in regard to the time they need
to execute, or in the amount of memory they require. Many of the
techniques described here reduce execution time as well as the amount
of memory used for a program. The sample program at the end of this
section also shows you how to time program execution using the
real-time ¢lock and how to develop these techniques further.

The first technique is the elimination of extransous program material.
The keyword LET should be removed from any assignment statements, since
it i3 not needed. Once the program is running correctly, REM statements
may be removed since they take up memory space, and must be skipped

over during program execution, thus increasing execution time. Variable
names should be removed from NEAT statements, since they increase loop

pracessing overhead.

The second technique is to pack as much on a program line as possible.
Placing two statements on the same line, rather than on twe separate
lines saves three bytes of memory; each line in memory is composed of
a count byte, two bytes for the line number, the actual pragram infor-
mation and & carriage return. These four bytes are "traded" for the
statement separator,” ", when two Tines are compressed.

71

PalyMorphic Systems BASIC

Redundant or trivial computation should be removed from FOR-NEXT loops,
and from statements that are repeatedly executed. For example, the
expression 63488+5%84 contains all constants, and may be reduced to the
single constant 638P8, eliminating the addition and multiplication as
well as the overhead of converting the string of characters "63488",
"5, and “64" to numeric form for performing the operation. If a
constant such as 63488 is used heavily in the program, it is wise to
a551gn that constant to a variable for two reasons: it is faster for
BASIC to Took uwp the value of a variable than to convert the string

of characters to a number each time; and if a commonly used number in
the program must be changed, it need only be changed in a single place.

In general, when trying to reduce the amount of memory a program uses,
eliminate everything that is not essential -- comments, unneeded blanks, .
gtc. Whem trying to reduce the execution time of a program, first find

out where the program spends mest of its time -- rewriting a section

aof a program to make it ten times faster will not yield noticeable results
if that section of the program 1% used only 3% of the time. When the
heavily used sections are identified, optimization can then be accomplished
with some confidence that it will make a positive difference. It should

te noted that an undebugged, untested or incomplete program is not a

good candidate for optimization, since most of the steps outlined above
reduce the ease of comprehension of a program, and increase the diffi-
culty in finding “"bugs.”

Example: seg next page

72

PolyMorphic Systems BASIC

Example: (This pxample is similar to the sample orogram TIMER 1n
Appendix B)

enter

198 REM GENERATE TIMING INFORMATION FOR BASIC PROGRAMS
118 REM CALCULATE AVERAGE TIMING OVER 188 SAMFLES.

12¢ REM FIRST CALCULATE LOOP OVERHEAD FOR 184 ITERATIONS
128 T=TIME (@)

149 FOR I=1 TO 194

1584 MEXT

168 T=TIME(1l) % REM TIME FOR l@¢ ITERATIONS

17¢ | "LOOP OVERHEAD IS ABOUT",T/(1884*68)," SEC PER ITERATION®
188 T1=T% REM SAVE THE OVERHEAD TIHME.

198 REM NOW TIME QVERHEAD WHEN WE USE "NEAT el

20@ T=TIME(?)

219 FOR I=1 TO 184

228 NEXT I

238 T=TIME(1l)

4@ 1"VERSUS",T/(l188%6@)," SEC PER ITERATION FOR MEXT 1"
25@ REM NOW TIME A=343

268 T=TIHE (9]

274 FOR I=1 TO 189

288 A=3924

298 WEXRT

38@ T=TIME (1)-T1 % REM SUBTRACT OVERHEAD TQ GET STMT TIME
319 1"A=388 TAKES ABOUT",T/(lBB*6@)," SECONDS TO DO."
320 REM NOW SET B=30d, DO A=B 188 TIMES.

339 B=3d¢

348 T=TIME (@)

358 FOR I=1 TO lo2@

ipd A=B

378 HEXT

388 T=TIME(1l}-T1 % REM AGAIN, SUBTRACT LCOP OVERHEAD
199 ("A=B, FOR B=338, TAKES ABOUT® ,T/(198%6@) ., SECOMDS. "
»RUN

output

LOOP OVERHEAD IS AROUT .882 SEC PER ITERATION
VERSUS 2.8333333E-83 SEC PER ITERATION FOR NEXT I
A=300 TAEES ARQUT 3.1666667E-83 SECONDS TQ DO.
A=B, FOR B=188, TAKES ABOUT 2.8333333E-03 SECONDS.
2

73

PolyMorphic Systems BASIC

Appendix A

LOADING BASIC, AND LOADING AND SAVING A BASIC PROGRAM

I. Using the Superscope C-1A3A. Cazsette Racorder

REc it SIETTL SrolETET

"MON® plug
goes here

The cassette recorder s used to Toad BASIC and to save and Toad a BASIC
program. The wolume conmtrol should always be set at "8, and the tone
control set at its highest setting, “+#5". If the recorder is not powered
by batteries, they should be removed. Whenever the recorder is used, the
cable marked “MON" should be conmected to the jack input labeled "ext. sp.

The cassette recorder has five buttons marked:

record: used simultaneousiy with the nomal spesd cue button
(k) to record tapes.

review (d4): used to rewind tapes.

cue (kB: used to rapidly advance tapes.

cue [p): used to advance tapes at the normal play speed; it is
the play button.

stopfeject: used to stop tape or {when pushed in further) to eject
tapa.

T4

FolyMorphic Systems BASIC

II.

C.

Loading BASIC from a Cassetie Tape

Turn on the Pely 88 (or if your machine is already on, RESET by
pressing the RESET button).

On the back of your Poly 58 machine is a switch marked "Poly/Byte®.
The position of this switch determines the mode of your machine;
"Palyphase” or "Byte". IF wour BASIC tape is marked "Folyphase", make
sure that this switch is in the "Poly" position; if your tape is
marked "Byte", turn the switch to the "Byte" position. ;

The screen will appear blank except for a small white block at the
upper left hand corner of the screen (the cursor).

[|
FI-
BASIC
|
Type:

PBASIC (to load BASIC written in "Polyphase” format), or
BBASIC (to load BASIC written in "Byte® format),
followed by carriage return.

Place cassette tape containing BASIC in cassette deck., Rewind tape.
Then push mormal speed cue button ().

A massage will appear at the top of the monitor screen indicating
which version of BASIC iz being loaded (give it 2 few seccnds to appear).
As the tape is loaded, record numbers will appear on the screen along
side the tape mame. This will indicate that the tape is being loaded
correctly. (For example, BASIC @O@1).

After the tape is loaded, BASIC will respond with & message at the top

7a

PolyMorphic Systems BASIC

of the screen, again identifying the BASIC version leoaded, and giving
the number of bytes available in memory.

Poly B8 BASIC version
AQD BG64 bytes free
e |

H. A BASIC prompt will be printed on the screen indicating that BASIC has
finished loading and is ready for your instructions.

Fossible Problems

If a question mark appears instead of & record number when the tape is

being loaded, the tape is not being correctly loaded. Several causes:
volume contral too low, interrupted tape, checksum error, damaged tape, etc.
Try again with increased valume.

[11. Saving and Leading a BASIC Program

A. Loading a BASIC Program

If you are loading a BASIC program from cassette tape, make sure that
BASIC has already been loaded in your machine. Before lpading a BASIC
program, do not hit the reset button on your Poly B8 -- that will
cause it to go to the monitor program. In order to execute BASIC
programs, BASIC must already be loaded in wour machine.

We will go through the process of loading a BASIC program using a program
from Appendix B, 3ample Programs. These programs have been included on
the cassette tape labeled BASIC Sample Programs. We will assume that you

76

PolyMorphic Systems BASIC

want to run the program named "ROSES™.

1. Place the cassette tape labeled BASIC Sampie Programs in the
cassette recorder. Rewind the tape. This tape has been recorded
in "Byte" format. Therefore turn the "Poly/Byte" switch in the
back af your machine to "Byte". (note: a "Byte" tape may be
loaded into your machine even if the BASIC wou have loaded into
the Poly 88 is recorded in “Polyphase").

2. Type:

LOAD,ROSES,B (this program is loaded in "Byte" format. I[f
the tape had been saved in “"Polyphase" format,
you would have typed LODAD,ROSES,P).

Note: a program must be Toaded in the same format ("Polyphase™ or
"Byte") in which it was saved, and with the same name it was saved
. under. This does not mean that the BASIC program must be in the
same format as the BASIC that vou have lToaded into the machine.
You may run "Byte" BASIC programs on "Polyphase" BASIC and vice
versa, as long as the "Poly/Byte" switch in the back of the Poly 88
is in the appropriate position for the BALZIC program that you are
loading.

3. HMake sure that the only cable comnected to the cassetie recovder

is the cable labeled "MON" in the jack input labeled "ext. sp.".
Type a carriage return. Depress the normal speed cue button ().
BASIC will respond with the meszage "Working...."

In the case of the example abowve, ROSES, you will see the name

of ancther program appear on the screen {without record numbers)

before you see ROSES appear. This is the program which 15 an the
‘ cassette tape before the program that you are asking for, ROSES.

7

FolyMorphic Systems BASIC

BASIC skips over this program, but gives wyou its name, so that
you know where you are on the cassette tape.

When BASIC reaches the program that you have asked for, the
name of that program will appear along side its record numbers

as they are loaded from the tape.

After all records of the program have been loaded, BASIC will
display a prompt symbol, >, to indicate that it is ready for
new instructions.

4, [If at any time you decide that you wish to interrupt the process
of loading a program, use of the Control-Y coemand will return you
to BASIC. Usze of the Control-Y command will erase amything 1in
working memory and clear all variables and strings, so do not use
it if you have anything on the screen you wish to save. To type
a Control-Y command, hold down the CTRL key and type Y.

B. Running & Program Loaded from Cassette Tape

After a program has been loaded from tape, the program will either go into
regular execution mode or auto-execute mode, [T the program has been
recorded in regular execution mode, it will not begin executing until you
type "RUN" and a carriage return after a BASIC prompt; >. If the program
has been saved in auto-execute mode, it will begin executing immediately
after loading without further user input.

If, after having correctly loaded your program, BASIC responds without a
prompt, >, you know that the program has not been saved in auto-execute
mode and requires a "RUN" and & carriage return after a prompt in order to
execute. To save your programs in auto-execute mode, see C, Saving a
BASIC Program.

Ta

PolyMorphic Systems BASIC

After you have finished with one program, and wish to load another, you must
type "SCR" after a prompt. This will clear the cld program from memory and
ready the memory to receive the new program. You may have only one program
at a time in working memory. Then follow the directions above, specifying
the name of the program you wish.to Toad. You may interrupt a program at
any time by using the Control-Y command.

Example:

If you loaded ROSES, typed RUN and then a carriage return, ROSES would
begin to run. You then might decide to interrupt its execution by use of
the Control-Y command. After typing SCR, you would then be free to lead
another program. In the example, the user wanted to see ATAN, which s
located before ROSES on the tape. After the user gives a Control-Y
command, interrupting the ROSES program, the user must type LOAD.ATAN.B
. and a carriage return. Then the user must rewind the tape to the point
at which ATAN begins on the tape. ATAN is the first program on the tape,
so the tape should be rewound to the beginning, and then started forward
again by pressing the (or play button on the recorder). GBelow i3 a
recreation of what you might see on your screen during this whole process.

>

*L0AD, ROSES,B
Working. ..

ATAN
ATAN
ATAN
ATAN
ATAN
ROSES AP@
ROSES 991
ROSES 9@2
ROSES 9@3
ROSES P4
ROSES

‘l. =RUN

(Example continued on following page)

9

PolyMorphic Systems BASIC

SAMPLE PROGRAM ROSES
I WILL PLOT THE EQUATION FOR A FAMILY OF ROSES BASED
OM THE STARTING NUMBER YOU GIVE ME (»2, PLEASE!).
STARTING M={Control-¥ cormand used here)

Interruption in line 319

»>=5CR
>LOAD,ATAN,B
Working

ATAN Ppp
ATAN 221
ATAN @@z
ATAN P@3
ATAN

PFossible Problems

"Checksum error" indicates that BASIC is umable to load the cassette .
tape program. This may be the restult of an attempt to load the

program in the wrong format (for example, to load a "Byte" program

with the "Poly/Byte"” cwitch fn the back of the machine turned to

“"Paly"). It may also be caused by tape damage, an interrupted tape,

incorrect volume and tonme control settings, a checksum error, etc.

D. faving a BASIC Program

Once you have created a BASIC program, you may wish to record--or
gsave--that program on tape.

1. To save a program, choose a name for your program that is
less than 8 characters long. For example; name your
program POZTRY.

2. Attach the "BIFHASE" or "BYTE" cable to the jack input
labeled “aux", depending upon the format you wish to
use for recording your program ("Polyphase™ or "Byte").
Remember to set the "Poly/Byte" switch on the back of

&0

FolyMorphic Systems BASIC

your Poly 88 to the proper format position.

Type:
SAVE,POETRY,P (to save a program in "Polyphase®
format)
SAVE,POETRY,E {to save a program in "Byte" format)

Do not hit carriage return.

Rewind the cassette tape, and push down the record and
play button (w») simultansously.

When the tape leader disappears and the recording tape
appears in the cassette deck window, hit carriage return.

BASIC will respond with the message "Working...", and
give the record numbers of the current tape records as
they are recorded on the cassette tape.

After the tape has been successTully recorded, BASIC will
respond with a prompt,>, ¢ indicate that it iz ready for
new instructions.

It is possible to save a program in auto-execute mode.

If saved in this mode, the program will begin executing
immediately after being loaded, without the use of the RUN
command. To save a program in auto-execute form, use

the standard form of the SAVE command [SAVE,NAME.P or B},
but replace the first comma with a semicolon (SAVE;NAME,P
or B).

E. Default Format for SAVE, LOAD and VERIFY

If Por B is not specified in the 3A8VE, LOAD, or VERIFY commands,
the default format, "Byte is used by BASIC. (See Appendix D}.

a1

PolyMorphic Systems BASIC

F. Verifying Your Saved BASIC Programs

Let us say that you have written a program named XANADU. You want to
do something else with your Poly 85 now, so vou decide to save the
program on tape for future use. When you save a BASIC program on
cassette tape, you don't actually transfer it to the cassette tape;
it's merely copied onto the tape from memory. After you save the
program on tape, you still have the original pregram in memory.

Tou may wish to check the recorded version against the original .
program still in memory to make sure that the recording is gdﬂd.
BASIC provides a way for you to do this; the VERIFY command.

Be careful to use the VERIFY command before any changes are made
to the program still: in memory or before you LOAD another program
(LOAD erases everything in working memary).

Type:
VERIFY ,XANADU,P (if the program was saved in "Polyphase”
format)
VERIFY ,XANADU,E [if the program was saved in “Byte" format),

followed by a carriage return.

Make sure that the "MON" cable is5 the only cable attached to the
recorder; once again check the "Poly/Byte" switch on the back of
your machine to see if it is in the proper positien for your tape.

With the rewound tape in pesition in the cassette deck, and the
umnedified pragram sti11 in memory, type the VERIFY command and
depress the play button () on the recorder.

IT the pregram read from the tape matches the program in Memary
fdentically, the record names and numbers will 2ppear on the screen
as they would for a LOAD command. A prompt symbol should appear

if the tape has been verified.

82

PolyMorphic Systems BASIC

If at any point the program-in the Poly 88's memory does- not match
the program read from the tape, a VERIFY error message will result.
The tape will not verify if the program has not been saved correctly,
1T there is. tape damage, or if the original program has been

changed in memory since it was saved on tape.

G. Interrupting Leading or Saving a BASIC Program

A Control=Y command may be used to interrupt saving or loading a
program. If used while saving a program, the program on the tape
will probably contain invalid material; if used while loading a
tape, the equivalent of a 5CR command is executed, erasing any
program lines, variable values, stc. in working space memory.

83

PolyMorphic Systems BAsIC

Appendix B

SAMPLE PROGRAMS

The cassette tape labeled BASIC SAMPLE PROGRAMS centains 10 programs
which demgnstrate some of the capabilities of the Poly 88 BASIC.
These programs of varying complexity are provided in this manual so
that the novice user can load these programs and see the programs

in execution. The programs in this section were contributed eijther
by R. T. Martin or §. Tytonida; the listings in this section of the
manual were made from the files on the sample program tape. Whers
practical, a sample run of the program is included with the listing,
although most of the programs rely on the use of the video display.

The sample program tape i% recorded in "Byte” format. Some of the
programs have been recorded to begin execution automatically, without
further user input after having been loaded. Others reguire the
user to type RUN after a prompt. To run one of the programs,

follow the directions given in Appendix A for loading programs

from cassette tape. Use one of the program names Below.

The names of the 10 sample programs on the tape are:

ATAN
AOSES
ORBIT
PRIMES
RHIST
S0RT
CLOCK
NEST
TIMER
FACT

84

PolyMorphic Systems BASIC

Zample Program ATAN

This program was written to demonstrate the use of multi-line functions,
as well as to provide an algorithm for computing the arctangent. The
approximation wtilized by this program is from Approximatiens far
Digital Computers, by Cecil Hastings, Jr., Princeton University Press,
1955. ATAN is organized for clarity, not for computational speed.
Note that in this program, as in all the sample programs, and any
program that is imtended for general use, that the user is informed
as to what 1s desired by the program as input, and then that input

is validated to some extent. This process of explanation and then
validation is central to the difference between & random computer
“program" and a program that s a product.

85

>LIST

123 REM SAMPLE PROGRAM "“ATAN"

113 REM DEMONSTRATES MULTI-LINE FUNCTIONS,

128 REM ANMD GIVES AM EXPANSION FOR FINDING ARC-TANGENT OF
13@ REM OF AN ANGLE IN RADIANS

148 1"SAMPLE PROGRAM ATAN®

158 !"GIVE ME A POSITIVE NUMBER, AND I WILL TELL ¥YOU WHAT"
168 !®ANGLE IN RADIANS AND DEGREES IT IS5 THE TANGENT OQF,"
178 {*TO 5 DIGITS OF PRECISION™

184 INPUT “NUMBER = *,X ;

198 IF X=>3 THEM 218

209 PRINT "MUST BE ZERO QR GREATER, PLEASE!"M\GOTO 138

21@ PRINT "THAT'S THE TAMGENT OQF",FNT(%)," RADIANS, OR",
220 PRINT 368*FMT(X)/({2%*3,1415926)," DEGREES."

238 GOTO 189

248 REM FUNCTION FOR COMPUTING ARCTANGENT

258 REM SOURCE IS “APPROXIMATIONS FOR DIGITAL CGHFUTERS“
268 REM BY CECIL HASTINGS, JR. PUBLISHED BY PRINCETON

278 REM UNMIVERSITY PRESS, 1955.

288 DEF FNT(R)

298 s=(R-1)/(R+1) “ZREM CONVERT THE RANGE

300 T=0\T=,99907726%5=,33262347* (57 3)+.19354346=(5"5)

310 TwT=,.11643287* (5" 7)1+.B5265332%(579)-.01172128*(5"11)
320 RETURN 3.1415926/4+T

3318 FHEND

34@ REM NOTE THAT THE COMPUTATION IS NOT CPTIMIZED FOR SPEED,
35@ REM BUT TO SHOW THE ALGORITHM AND THE CONSTANTS!

*RUN

SAMPLE PROGRAM ATAN

GIVE ME A POSITIVE NUMBER, AND I WILL TELL ¥YOU WHAT
ANGLE IN RADIANS AND DEGREES IT IS THE TANGENT OF,
T 5 DIGITS OF PRECISION

NUMBER =]
THAT'S THE TANGENT OF .78539815 RADIANS, OR 44.99999% DEGREES.

HUMBER = 1,733
THAT'S THE TANGENT OF 1.9474356 RADIANS, OR 0P.013641 DEGREES.

NOMBER =
Interrupted in line 188
>

g&

PolyMorphic Systems BASIC

sample Program RBOSES

This program is a "number cruncher". A number cruncher is a program
that does an extraordinary amount of computation. ROSES is such a
program. For each point displayed on the screen, two sines and a
cosine must be calculated (lines 350-36R). If 24K or more memory is
available, these wvalues for sin(t) and cos(t) may be precomputed

and saved in an array, thus eliminating a good portion of the
computation. The number of sample points computed is set as variable
¥ on line 270 (10D as recorded on the tape). This number may be
increased, increasing the intricacy of the pattern, as well as the
time required to "draw" each curve.

Try values of N Targer than 199 (or even 1P0Q), and observe the
results. Try K = 509 and starting N = 83: [T you are mathematically
inclined, examine the effect of zampling the rose eguration in closed
form. Why is it the case that for N > 188D we do not see a solid
white screen (for ¥ = 5PD), but instead see some very interesting
patterns?

189 REM SAMPLE PROGRAM “ROSES"

118 REM THIS PROGRAM PLOTS ROSES ON THE VWIDEQ SCREEN.

128 REM THE GEMERAL FORM OF THE ROSE, IN POLAR FORM, IS

130 REM R=A*SIM(M*T) WHERE A IS TEE MAXIMAL RADIUS, AND

148 REM T IS THE ANGLE THETA, WHICH GOES FROM & TO 2*PI1

158 REM RADIANS TOD GENERATE THE ROSE. TO PLOT THIS FUNCTION

168 REM IN THE CARTESIAN COORDINATE SYSTEM, WE USE THE

178 REM TRANSFORMATIONS X=R*COS(T)+Xl AND Y¥Y=R*SIN(T)+Y¥l.

188 REM WHERE (x1,Yl) IS THE COORDIMATES OF THE POINT WE

199 REM WISH T¢ CALL THE ORIGIN. THIS GIVES US THE EQUATIONS
209 REM X=63.5+44*SIN(N*T)*COS(T), ¥Y=23.5+22*SIN(N*T)*5IN(T)
219 REM TO SPEED UP THE COMPUTATION, WE FACTOR OUT THE TERM

228 REM SIM(NM*T) TO GIVE THE EQUATIONS SHOWM BELOW. MNOTE

239 REM THAT WE ONLY COMPUTE K POINTS ALONG THE CURVE; THIS

249 BREM GIVES US AN INTERESTING SAMPLING EFFECT FOR LARGE N.
254 REM WE INPUT A STARTING ¥, AMD GEMERATE ROSES FOR N

269 REM DECREMENTING DOWN TO 2.

274 K=1p@“REM CHANGE FOR MORE OR LESS POINTS

289 PRINT CERS(12),"SAMPLE PROGRAM ROSES"

299 1"I WILL PLOT THE EQUATION FOR A FAMILY OF ROSES BASED"

388 !"ON THE STARTING NUMEBER YOU GIVE ME (>Z, PLEASE!)."

319 INPUT "STARTING N =",L

329 IF L<2 THEN !"...GREATER THAH 2, PLEASE!"\GOTO 318

339 FOR N=L TO 2 STEP -1

349 PRINT CHRS5(12) ,\PRINT "N =", H\PLOT 9,44.8

150 FOR T=28 TO 2%*3.14159 STEP 2*3,14159/K

360 SeaSIN(N*T)WE=63,5+44*S*CO5 (TINY=23.0+22%5*5IH(T)

378 PLOT X,Y,l1WHEXT

3898 NEXT N\ GOTO 27d

*RUN

PolyMorphic Systems BASIC

Sample Program ORBIT

The QRBIT program simulates the motion of two massless particles in motion
about a force center. To describe them as "massless” particles is another
way of stating that they do not interact with one another. They interact
only with the force center.

This program was run with the Poly 88 driving an Advent Corporation pro-
jection television system, producting an image approximately five feet across,
and was quite entertaining.

Try changing the value for D on line 280, which comtrols the accuracy
(step size) of the appraximation. Also try altering (s1ightly, at first)
the initial conditions for the particles, such as the welocity components
set by V1, V2 and V3, V4.

This program was written on a visit to the Physics Computer Development
Praject (PCOP) at the University of California at Irvine. The idea for the
program was suggested by Or. Richard Ballard, who was interestad in seeing
what the Poly 88 would do with amother "number cruncher", such as a very
simple model of motion im a farce field. Dr. 221lard described the functions
and they were turned into OREIT.

ORBIT is dedicated to Isaac Newton, who was able to conmect the motion of the
planets, to an apple falling from a tree.

29

109
118
128
138
148
158
168
165
178
188
133
294
214
2249
233
2449
258
264
279

REM SAMPLE PROGRAM "ORBIT®

REM DEMONSTRATES PLOT FUNCTION IM DISPLAYING THE

REM ORBITS OF TWO MASSLESS PARTICLES ABOUT A FORCE CENTER
REM SIMPLE 2 BODY ORBITAL EINEMATICS PROGERAM

REM EKINEMATICS EQUATIONS BY R, BALLARD, PROUGRAMMING

REM BY R. MARTIN, BASIC UMDERSTANDING AND EXPLANATION

REM OF MOTION BY I. NEWTON

REM NOTE: ORGANIZED FOR SPEED, NOT EXECUTION!!!

PRIMT CHRS(12), N\ PLOT @,47.,0

PLOT S58,25,8\PRINT CHRS(128+14)N\PLOT ©@,21,8
X1=\X2=P\V1=8"\V2=_5\T=9"D=_1

D=.5%REM CHANGE D FOR MORE OR LES5 ACCURACY IN ORBITS
KI=2M\X4=8"Vi=8Vi=-_ 6

PLOT H,V,0 % H=1@*(X14+5)V=5* (X2+5)\PLOT A,V,1

PLOT H1,HZ,@\H1=1@* (X3+5)\HZ=5* ({4+5)PLOT H1,HZ,1l
X1=X1+V1*DN\X2mX 2+ V2 DN K I=X3+VI DN X4=K4+V4*D

SeXl®X1+4X2*%2 N\ R=SORT(S)NE5=D/(R*S)\V1=V1=-5*{1\VZ=V2I-5*X2
S1=X3*X34+X4*X4{\R1=5QRT(51)51=D/(R1*31)\VI=W3I-531*%3
Vad=v4-5] *A4\T=T+DN\GOTD 220

*REM DOES NOT DISPLAY WELL ON RYTYPELLLl!

»
5
>

20

PolyMorphic Systems BASIC

Sample Program PRIMES

This program was originally written to fi11 the need for a program that would
compute continuously for system testing. It simply computes prime numbars,
displaying the last computed mumber on the screen. In the calculation itself,
we keep in vector Ni a list of uwp to the first 538 primes to use as trial
divisors in testing a number for being prime. If a2 number does not have a prime
divisor less than or equal to the square root of the number, it is prime. In
the calculation we use L as a pointer into the list of prime divisors in a
manner which alleviates the need to compute the square root for each new
number. This technique was described by Ira Baxter to R. T. Martin in a con-
versation in 1871. Those interested in prime numbers might look at Yolumes I
and 2 of The Art of Computer Programming by Donald E. Knuth, published by
Addison-Wesley.

21

133 REM SAMPLE PROGRAM “PRIMES™

118 REM FIND AND PRINT PRIME NUMBERS.

128 REM MARCE 1877, &. TYTOWNIDA

12@ REM THE LIST M IS5 USED TO HOLD THE FIRST S@E PRIMES-

142 REM IN TESTING TO SEE IF A NUMBER IS5 PRIME, WE ONLY MEED
158 REM TO LOOK FOR FACTORS THAT ARE LESS THAN OR EQUAL TO
168 REM THE HNUMEER: IN FACT, WE OHLY NEED TQ CHECE PRIME

178 REM FACTORS LESS THAN OR EQUAL TO THE SQUARE ROOT OQF THE
188 REM NUMBER. RATHER THAN CALCULATE A SQUARE ROOT EVERY TIME,
198 REM WE INSTEAD EEEP A POINTER, L, INTO THE LIST OF PAST
280@ REM PRIMES, AND BUMPF THAT UF AS MEEDED. NOTE THAT WE ONLY
212 REM TEST QDD NUMBERS. THE NUMBER WE DISPLAY IN THE MIDDLE
2280 REM OF THE SCREENW IS THE LATEST PRIME, THE MUMBER AT THE
230 REM BOTTOM IS THE CURRENT TEST BOUND. THE RATHER

248 REM BAROQUE EXPRESSION (INT(M/H(P})*N(P})-M) GIVES THE

258 REMAINDER OF DIVIDING THE NUMBER M BY PRIME FACTOR N(P).
268 REM IF THE REMAINDER IS5 ZERO, THE NUMBER CANNOT BE PRIME.
278 REM IF WMON-IERO, WE MUST TEST PRIME FACTORS THRU M(L).
288 REM IF NONE OF THOSE ARE DIVISORS, WE HAVE A MEW PRIME,
298 REM AND IF K<30@, WE STUFF IT ONTO THE LIST. MY THANEKS
382 REM TO IRA BAXTER FOR EXPLAINING TO ME, MANY HMOONS AGO,
113 REM WHY YOU DOW'T HWEED TO CALCULATE SQUARE ROOTS EVERY
329 REM TIME, AND TO THE ANCIENT GREEKS THAT DISCOVERED THE
138 REM MAGIC AND MADMESS OF PRIME HUMBERS.

342 REM REMEMBER: (2719937)=1 IS PRIME!

150 DIM M{588) .

360 PRINT CHR3(12) MPLOT &,47,8 \REM CLEAR SCREEN AND ERASE CURSOR
378 M{1)=2% M(2)=3%\ H(3)=5

388 K=2)\L=2.M=5

398 P=1%IF M»M(L)"2 THEN L=L+1\GOTO 399

498 IF (INT(M/N(P))*H(P)=M)wd THEN MaM+2\GOITD 394

418 IF P=>L THEN 420 ELSE P=P+1°\GOTO 484Q

428 E=E+1\IF E<580 THEN N(EK)=M

438 PLOT 55,23,8\PRINT M," IS PRIME!"“\PLOT &,29,8\M=M+2\GOTO 399

92

Pﬂ]yﬁafph{c Systems BASIC

Sample Program BHIST

This program was written to provide some analysis of the random number gen-
erator used in BASIC. It also uses the PLOT feature to produce the histograms
and in positioning the cursor for PRINT statements. We compute the distribu-
tion of the random number generator cumulatively into 100 "buckets,®; the
array A. We then compute the area under this curve, used in determining the
18% points, and the maximum value in a bucket over the set of buckets, which
is used in scaling the histogram bars. This computation iz done in lines

199 to 238. We then find the points, or bucket numbers, corresponding to

18% increases in area under the curve.

Mote the use of the PLOT statement in line 278 to pasition the cursor for the

PRINT statement producing a carriage return at the end of the line. As am
optimization, we do not reprint one of these "decile points" unless it has changed.
The remainder of the program is responsible for updating the histogram bars, and

the scaling of the display. Line 373 computes the scaled height of the hist- .
ogram bar, and then we will shrink it, grow it or leave it alone, depending on

what is needed. The long-term behavior of a good random {pseudo-random} number
generator should produce a relatively flat histogram, and the decile points :
along the right edge of the screen should be multiples of 18, from 19 to 194.

For mare analysis of random number generators, see Volume II of The Art of
Computing Programming by Donald E. Knuth; chapter three of this book is devoted
entirely to random numbers, pseudo-random numbers, and methods of testing and
generating them. The random number generator used in BASIC was provided by
Eric Rawson.

a3

—
13@
ll@
12@
13g
148
158
1648
174
1584
194
208
218
228
230
240
258
268
278
288
298
Jde
2148
328
334
349
258
lad
i7a
13a
392
489
41@
412@
430

REM SAMPLE PROGRAM “RHIST"

REM USES THE PLOT FUNCTION AND PRODUCES A HISTOGRAM

REM SBOWING THE DISTRIBUTION OF THE BANDOM NUMBER

REM GENERATOR, AND PERCENTAGE DISTRIBUTIONS

DIM A(10@),¥(129),0(18)

PRINT CHRS(12),\PLOT @,47,8“\REM CLEAR THE SCREEN

N=18¢ %\ S=188 \ REM N IS5 THE SAMPLE SIZE, 5 IS TOTAL SAMPLES
FOR I=1 TO 199\Y(I})=7\NEXT“REM INITIALIZE HISTO BARS
PLOT 121,43,9\PRINT "%3%3%"\PLOT 8,40,8“REM PRINT DIST. HEADER
FOR I=1 TO NA\K=INT(lAB*RND(9))+1%A(K}=A(K)+1\NEXT
H=-3M=8% REM H IS HIGHEST $ SEEM, M=S50M

REM COMPUTE SUM (AREA UNDER CURVE) AND FIND HIGH VALUE
FOR I=1 TO W\MsH+A(I}%IF A(I)>H THEN H=A(I)

MEXT

F=,14G=0\J=1YREM PUT UP DECILE ({(%%%) POINTS

FOR I=1 TO NAG=G+A(I)“IF G<F"M THEN 298

IF Q(J)=I THEN 2838“REM THE VALUE HAS NOT CHANGED

PLOT 118,3*J+14,8\PRINT I\PLOT @,3*J+7,8\REM PRINT POINT
Q(J)=I%J=J+1\F=F+.1 :

NEXT

PLOT @,3,08%\PRINT "N =",5," MAX =" ,H\PLOT 9.0,8

REM HOW PLOT BARS. NOTE THAT WE SCALE, 50 THAT THE

REM LARGEST BaR IS 39 HIGH. X=2+I+INT((I-1)/18)

REM GEMERATES A BLANE SPOT EVERY 10 TO AID IN COUNTING
REM THE BARS ON THE SCREEM.

REM WE SEE IF A BAR HAS CHANGED, HAS GROWH, OR WHAT, AND
REM DO THE RIGHT THING FOR EACH CASE TO OPTIMIZE OUR DRAWING.
FOR I=1 TO 188 \V=7+INT(29*A(I) /H)\X=2+I+INT((I-1)/1Q)

IF V=Y (I) THEN 420

IF V<Y (I) THEN 418

FOR J=¥ (I} TO VAPLOT X,J,l\HEAT\GOTO 429

FOR J=Y(I) TO ¥V STEP -1\PLOT X,J,B\NEXT

¥ (I)=V\NEXT

S=3+NMGOTO 19@

REM ANOTHER PROGRAM THAT DOES NWOT 0O WELL OW THE HYTYPE....

L Y

PolyMorphic Systems

Sample Program S0RT

Sort was written to demonstrate two differing methods of sorting, and the
relative efficiencies involved in each. Sort a2lso demonstrates the wtility
of a small, personal computer with the right balance of software features in
computer science education. One of the authors (Martin) feels he learned
more about sorting algorithms and algorithmic analysis by sitting down with
Vol. III of Knuth and the Poly 88, and building sorting algerithms and test-
ing them than he did in one three-month academic gquarter of formal classes.

This program also demonstrates the use of PEEX and POKE for examining and
modifying memory locations, especially the video board memory, and the use
of the TIME function for timing processas.

The interestad user is directed to Volume [II of The Art of Computer Programming,
by Doanld Knuth, which is devoted entirely to sorting and serching, rather than
volumes I or II.

L)
Lr

lge
118
128
138
148
1548
164
174
1842
139¢@
288
21@
228
238
248
258
264
27a
230
23@
J8o
31e
229
234
349
isa
160
378
183
385
398
488
418
423
434
443
458
468
470
488
498
ade
sle
Sl
234
548
354
=64
578
588
298
6én

AL TR

REM SAMPLE PROGRAM "SORT®

REM THIS PROGRAM USES THE PEEK AND POKE FUNCTIONS TO

REM MAMIPULATE THE CONTENTS OF THE VIDESD BCOARD, AND

REM MORE IMPORTANT, DEMONSTRATES TWO TECHNIQUES OF

REM SQRTING IHFORMATION: THE VEWNERABLE BUEBLE SO0ORT,

REM AND THE SIMPLE, BUT VASTLY SUPERIOR "SHELL®™ SORT.
Z=REND (TIME(1) /65536)\REM RANDOMIZE....

DIM P{(256)“EEM HOLDS STUFF TO SORT

DIM H(18)\ REM HOLDS INCREMENTS USED BY SHELL SORT

REM CALCOLATE INCREMENTS FOR SHELL SORT ALGORITHM
H=4“FOR I=1 TO 16“H(I)=B“H=31*H+1“NEXT

GOSUE 419“\REM GENWERATE LIST OF S5TUFF TO SORT

PRINT CHBRS(12) AINPUT "HOW MANY THINGS TO SORT (2=256)7",N
IF (M>256) OR (W<2) THEN 22@% REM FILTER ANSWER

PRINT “"WHICH SORT DO ¥YOU WANT TO USE:*

PRINT "™ 1 BUBBLE SORT"

PRIMT * 2 SRELL SORT"

INPUT*]1 FOR BUBBLE, 2 PFOR SHELL : ",M

IF (M<>1) AMD (M<>»2) THEN ZT78%REM FILTER ANSWER

INBPUT "DO YOU WANT THE SAME TEST PATTERN (Y OR W) ?",AS
IF AS="N" THEN GOSUB 410%GOTQO 323 -

IF AS<>"Y" THEM 2948

O=(3487% REM SCREEN ORIGIN (FE8@@ HEX) -1

PRINT CHRS (12) ,\PLOT 8,47,20\REM CLEAR THE SCREEN

FOR I=1 TO NMWPOXE I+D,P(I)\NEXT\REM FILL 3CREEN WITH CRUD
S=TIME {@)\W=8“REM TIME AND NUMBER OF SWAPS

O M GDTOD 448,528

PLOT @,12,0\FRINT "SORTED " ,M,"™ THINGS IN".W." SWAPS, AND",
PRINT TIME(l)//68," SECONDS."

INFPUT "TRY AGAIN (Y OR W) ?",ASM\IF AS="Y" THEN 220

IF AS<I"N"™ THEM 185

STOPNGOTO 228\REM GOTO S0 THAT "CON'" WILL CONTINUE PROGRAM.
REM GEMERATE HEW PATTERN IN P

PRINT *"THINMKING...."

FOR I=1 TO Z256%P({I)})=128+127*RND (@) \NEXT\RETURN

REM BUOBEBELE S0RT. WE WANDER DOWN THE LIST, LOOEING FOR
REM TWO ELEMENTS OQUT OF ORDER, AND SWAP "EM WHEN WE FIND EM,
S=TIME (@)

HE=N

P=A%FOR I=0+1 TO O+K=1

L=PEEK (I)“\M=PEEE (I+1)%IF L<=M THEN 518

FulWPOKE I+1,LMWPOKE I ,M\W=W+1

HEXTWK=K=1%IF F=8 THEN 378 ELSE 488

REM SHELL SORT. THIS IS FROM KNUTH VOLUME 3, ALGORITHM D,
E=TIME (8)\W=@

FOR Q=1 TO 9\IF H(Q+1)}>N THEN EXIT 50

HEXT

FOR J=0'T0 1 STEP -1

F=8%H=H (J)WFOR I=0+1 TO 0O+M-H

L=PEEE (I} \M=PEEE (I+H)IN\IF L<=M THEN 638

Ful\POKE I, M\POKE I+H,LYW=WH+1

HEXT\IF F>»8 THEN S57&

HEXTWGOTO 470\REM FINISH WITH RUBALE

96

PolyMorphic Systems BASIC

Sample Program CLOCK

This program demonstrates the real-time clock fumction availabie in BASIC.
It alzo uses formatted print in displaying the time (lines 260 and 4B},

PEEK, PDKE, and QUT. Without redevelopment, CLOCK turns the POLY B8 into
a very expensive, and inacecurate clock. After the program was written, it
was determined that it was not very accurate, loosing two or three minutes
an hour. 3Solve the problem of this inmaccuracy, and in so doing you will

learn about wutilization of the time function. It i5 also a simple matier

to modify the program to display every second.

a7

}

»LIST

1328 REM SAMPLE PROGRAM "CLOCK™

118 REM THIS PHROGRAM DEMOMSTRATES THE USE OF THE REAL TIME
12P REM CLOCE AVAILABLE THROUGH THE BASIC "TIME"™ FONCTIOHN
138 REM IF ¥OU HAVE AN AI CYBERNETICS MCDEL 1988 SPEECH
148 REM SYNTHESIZER AT QUTPOT PORT 234, IT WILL GENERATE
158 REM "TICE-TOCK" NOISES....

168 REM WRITTEN MARCH 1877 5. TYTONIDA

17@ PRINT CHRS5(12),"SAMPLE PROGRAM CLOCE"

18@ PRINT "APFTER ¥YOU GIVE ME THE CURRENT TIME IN HOURS AND"
19@ PRINT *MINUTES, I WILL BE a4 CLOCK!™

288 INPUT "WHAT HOUR IS IT (8=-23)7",H

218 BE=INT(H)M\IF (H<@) OR (H>23) THENW 284

220 INPUT "WHAT MINUTE DO I START WITH (@8-=-59)2".H

230 M=INT(M)I“IF (M<B) OR (M>59) THEW 228

240 s5=3 % REM SECONDS COUNTER

250 PRINT " WHEN ¥YOU HIT RETURN, I WILL START BEING A CLOCH AT"
260 PRINT %2T,H,%":",M,":",8." O'CLOCE",

278 IMPUT " (BEIT RETURN TO START)".AS

288 PRIMT CHRS(12) ,\PLOT @,47.0

299 K=43 % REM 'TICK' FOR AI CYBERMETICS BOARD

388 W=228% REM SYMBOL FOR THE CLOCK

319 O=R3488+322+8%64% REM IN THE MIDDLE OF THE SCREEN

3290 Z=TIME (@)

330 IF TIME(1)+<69d THEN 3349

349 IF E=43 THEWN X=47 ELSE E=43

350 IF W=228 THEW W=1735 ELSE W=2Z2d

38@ OOUT 254 ,EMNPOEE O,WNWOUT 254,08

3790 S=5+1M\IF S<>6@ THEN 328 ELSE S5=1

380 M=M+1MIF M<>6@0 THEN 488

398 M=8“H=H+1“IF H=24 THEN H=¢@

40@ PLOT @,47,8\PRINT %2I,H,":",M,":" ,S\PLOT 9,43,2\GOTO 328
» :

h

*>REM NOT VERY INTERESTING ON A HYTYPRE!:!

}

O e

a8

Polymorphic Systems BASIC

sample Program HEST

This is a very bizarre program. It was thought up and writtem while
preparing this manual. The question came up, “Well, just how many FOR-
MNEXT's can you nest in a 16K machine?" This program provides the
answer. Basically, it uses the QOUT @ feature of BASIC that allows
characters to be put in BASIC's input buffer to write a program. The
function on lines 230 to 26§, when called with a string argument,

places this string followed by a carriage return inte the input buffer.
The problem with having 2 program add statements to itself is that

once the new statement is entered, axecution of the program may not be
continued: it must be completely restarted. For this reason we must
devise some means of keeping track of cur progress in the task of adding
statements to the program. On each iteration through the process, we
need to generate a FOR statemenmt, and its accompanying NEXT, and then
the command RUN to start the process over. We keep track of the Tine
number we gemperated in the variable L, the letter of the alphabet we

are generating FOR statements with in [, and the number following the
variable in the variable J. The key to the process may be seen in

line 15@; in this line we produce a HEW line 119, with the updated
values for L, I, and J. In this manner we can retain some memory of

the program’s last “1ife" in its new incarnation. Lines 198 through
180 generate & new line 119, the FOR and MEXT statements, amd the RUN
command in the input buffer, and then the program stops. MWhen this
happens, BASIC reads from its buffer, gobbling up the characters we have
placed there. When we generate the desired number of FOR-NEAT pairs,
controlled by the check on I in 1ine 149, we go to the second part af the
program, starting at lime 15%@. It is the purpose of this part of the
program to DELETE the first part of the program, delete itself, generate
a PRINT statement at line S@@P, and then run the constructed program, which
consists of FOR-NEXT statements, and one PRINT. If you run this program
and examine the line number on the last FOR statement, you can get the
answer to the question, “"How many FOR-MNEXT loops can we nest?”

‘g >LIST
@i o 55(58) ,A5{11},B5(26)
119L= 1836%\I= 4\J= 4

128
13e
148
158
la8
178
158
138
1495
204
218
228
23@
248
258
268
?

*

AF=" P123456789"\BS="ABCDEFGHIJKLMNOPQRSTUVAXYZ"
L=L+1%J=J+1\IF J=12 THEN J=1%I=I+l

IF I=12 THEH 19¢@
Z=PNS("118L="+STRS (L} +"\I="4STRS (I} +™" \Ju"+STRS (J})
Z=FNS5 (STRS (L) +"FOR "+BS5(I,I)+A5(J,J)+"=1 TO 1")
L=9999=L"Z=FNS [STRS (L) +"NEXT "+BS{I,I)+A5(J,J))

2=FNS ("RUON")WSTOP

Z2=FN5("119GOTO2806")“FOR I=128 TO 173 STEP 13\ IZ=FHS({STR:(I))
HEXTYWGOTO 184

IuFNS ("108") +FNS (" 200") +FPNS ("19@") +FHNS("218") +FNS("228%)
I=FNS ("S500@! "+CHRS (34)+" I"+CHRS (34))4FHS("238") +FHS ("268")
Z=FNS("188")+FNS("11@")+FNS (" 248") +FNS (" 258") \GOTO 184
DEF FMH5(53)

S3=85+CERS(13)

FOR 51=1 TO LEM(S5%)\OUT #,A5C(55(51,51))“\NEXT\RETUEN @
FHEND :

*REM WARNING: CLOSE EXAMINATION OF THIS PROGEAM MAY EE
*REM HAZARCDOUS TO YOUR MENTAL STATE! (5. TYTONIDA)

>

o

100

FolyMorphic Systems BASIC

Sample Program TIMER

This program was included to allow the user to time statements (as described
in section 19 of this manual), to demonstrate the use of the TIME function,

and to show that saying MEXT I is indeed slower in resulting program exectuion
than saying simple NEXT. Because even the relatively slow 5989 processor,

and BASIC can execute statements ﬁu:h faster than the 68 ticks per second will
allow us to time directly, we must time a known number of these operations, and
calculate the individual times from that. Any software timing process we can
accomplish in BASIC, involves the introduction of overhead*, so we must
measure that overhead and factor it out of the timings we generate. This is
the reason we average over 182 samples, and it should be clear why we would
want To use a larger number, say 100P, for the number of operations to time.

In the timer program shown, how accurate, and repsatable are the results? If
averaging over 1P} samples is better than 1PP, wouldn't one million samples be
better? How much better?

* (QOverhead time is time taken up by accomplishing things other than that
which want to time.

101

=

)

*LIST

13 REM SAMPFLE PROGRAM TIMER

28 REM THIS PROGRAM ALSO APFEARS AT THE END OF SECTION 18 OF
3@ REM THE BASIC MAIJAL. (5. TYTONIDA, MARCRH 1977)

188 REM GENERATE TIMING INFORMATION FOR BASIC PROGRAMS

113 REM CALCULATE AVERAGE TIMING OVER 188 SAMPLES.

128 REM FIRST CALCULATE LOOP OVERHEAD FOR 18@ ITERATIONS

139 T=TIME(9) .

148 FOR I=1 TO 1849

159 MEXT
168 T=TIME(l) % REM TIME FOR 180 ITERATIONS OF FOR-NEXT

17¢ !"LCOP OVERHEAD IS ABOUT",T/({l89#*6@)." SEC PER ITERATION"
188 T1=T % REM SAVE THAT OVERHEAD NUMEER

199 REM NOW TIME OVERHEAD WHEN WE [SE "NEXT I"

299 T=TIME(E)

214 FOR I=1 TO 188

229 WEXT I

238 T=TIHME(]l)

249 !"VERSUS",T/(108+*5Q3)," SEC PER ITERATION FOR MEXT I”
258 REM MOW TIME aA=388

260 T=TIME(9)

278 FOR Im}l TO 134

280 A=30a

298 MEXT

1880 T=TIME(l})-T1 “ REM SUBTRACT LOOF OVERHEAD

31@ !"A=309 TAKES ABQUT",T/(198*6@)," SECONDS TO DO."
328 REM NOW SET B=3g@0 AND TIME A=B

330 B=38@ !

Jad T=TIME (@)

354 FOR I=1 TO leg

368 A=B

379 MWEXT
384 T=TIME(1l)-Tl1 % REM AGAIM, SUBTRACT CVERHEAD

393 !"A=B, FOR B=388, TAKES ABOUT",T/(l0@*6g)," SECONDS."
*>RUN

LOOP OVERHEAD IS ABOUT .d@2 SEC PER ITERATION
WERSUS 2.0066667E-283 SEC PER ITERATION FOR NEXT 1
A=308 TAKES ABOUT 3.1666667E-82 SECONDS TO DO,
A=B, FOR B=300, TARES ABOUT 2.6666667E-03 SECONDS.
3

*REM ¥YOU CAN INSERT YOUR FAVORITE EXPRESSION IN LINE 364,
*REM AND SEE HOW LONG IT TAKEsS TO EXECUTE....BON APETIT...
F

»
)
>

102

PolyMarphic Systems BASIC

sample Program FACT

FACT demonstrates multi-line fincticns. The definition for the fac-
torial function occurs on lines 260 to 289. What happens when we call
the function with. the argument 17 With 27 With an argument greater
than one, the function calls itself, saying, in effect; "I can return
the factorial of three, if you give me the factorial of two". For an
arbitrary number, this calling itself, or recursion, continues until
the function is called with 1 asz the argument, in which case it returns

1 to whomever called it,etec.

The notion of building the solution to a large problem by finding the

soTution to a simpler one is & very important idea in the use of

computers. In fact, the jdea of recursion 15, to some extent, a more

powerful tool in problem solving tham the idea of loops, or iteration.

With it we can build solutions to larger prablems by building programs

that break the problem down into smaller pieces that are easier to solve.

But why the 177 The 17 appears because BASIC is not wvery efficient at .
accomplishing recursive functions, and one internal element of BASIC,

called the "control stack™,is rather small. With numbers larger than

177 Why don't you change line 288 of the program and find out?

103

>

*LIST

144
118
129
138
140
158
168
178
138
194
294
219
228
23e
248
258
200
278
288

*RUN

REM SAMPLE PROGRAM "FacCT®

REM THIS PROGRAM DEMOMNSTRATES RECURSIVE USE OF

REM MULTILINE FUMCTICNS IN FINDING PACTORIALS FOR
REM SMALL INTEGERS. (5. TYTONIDA, MARCH 1977)
1"SAMPLE PROGEAM FACT"

I"GIVE ME AM INTEGER SMALLER THAN 17, AND I WILL®
I"TELL YOU ITS FACTORIAL,"

" (TYPE CONTROL-Y TO STOP) ™

INFUT "HOMBEE IS5 7 ".X

IF (X=INT(X))<>3 THEM 158 REM NOT AN INTEGER

IF X>16 THEN 15d \ REM TOG BIG

IF X<@ THEW !X," FACTORIAL IS UNDEFIMED! " \GOTO lEH
1%," FACTORIAL I3 ,FHN(X)\GOTO 138

REM DEFINITION OF FACTORIAL. NOTE THAT THE FURCTIOCH
REM CALLS ITSELF. THIS IS AN EXAMPLE OF A RECURSIVE
REM FUNCTION. WE LIMIT TO <17 BECAUSE OF STACK SIZE...
DEF FNHN (M)

IF 8N<2 THEN RETURM 1 ELSE RETURN N*FNN(N-1)

FHEND

SAMPLE FROGRAM PACT
GIVE ME AW INTEGER SMALLER THAW 17, AND I WILL
TELL ¥OU ITS FACTORIAL.
(TYPE CONTROL=Y TO STOP)
MUMBER 15 7 7
7 PACTORIAL IS 5844
MUMBER IS 7 =3

-3

FACTORIAL I5 UNDEFINED!

HUOMBER IS 2 2.2
GIVE ME AN INTEGER SMALLER THAN 17, AND I WILL
TELL ¥YQU ITE FACTORIAL.
(TYPE CONTROL-Y TO STOF)
MUMEBER IS5 # 9
9 FACTORIAL IS 262830
NOMBER IS5 7
Interrupted in line 188

e
E
b
;o
>

Palymarphic Systems BASIC

Appendix C

THE BASIC CHARACTER SET

A1l characters and symbols in BASIC are stored in the machine zs numbers
(the ASCII code). The following list contains all of the characters in
BASIC and their ASCII code in decimal representation. To print any
character, type PRINT CHR3{the decimal number as given next to the desired

character below).

Example:

anter >LIST
14 PRINT TAB(1@),CHRS(68) ,CHRS(32) ,CHRS3(63),
28 PRINT CHRS5(32),CHR3(83),CHR5(32) ,CHRE(73),
3@ PRINT CHRS$(32),CHRS(67),CHRS(13),TAB(1ll),
‘48 PRINT CHRS$(33),CHRS(32),CHR$(33),CHR$(32),CHRF (33}
»RUN

output BASIC

: P11 . 'l'

Cantral Characters

NUL == @ oCl -- 17
SOH -- 1 pc2 -- 18
ST == 2 DC3 -- 13
ETX -- 3 DCd == 2D
EOT -- 4 NAK -- 21
ENG -- 5 SiN -~ 22
ACK -- & ETE -- 23
BEL -- 7 CAN -- 24
BS - & EM -- 25
HT - % s -- 26
LF -- 1p ESC =-- 27
VT -- 11 F$ - 28
FF == 12 G5 -- 29
CR == 13 RS - 3D
0 -- 14 Us == 3]
SI == 15 SP -- 32
OLF -- 16 DEL == 127

PolyMorphic Systems

BASIC

Humbers and Letters of the Alphabet

= - v o Mo = X T Mt = KOG T M D W B W 8 s o e LM T

48
49
50
2l
52
53
54
55

56

a7
65
66
&7
68
69
7@
71
iz
73
74
73
76
77
78
79
ap
a1
B2
a3
84
85.

106

o 1= T T I =T T = A = A T

M W M OE £ O & 1O O ™ o 89 3 e o obs

86

87

88

as

58

o7

98

99
198
191
192
193
194
195
196
197
198
199
110
111
112
113
114
115
116
117
118
119
128
121
122

PolyMorphic Systems BASIC

Special Symbals

1 - 33 T -- B3

" oe- 34 @ -- B4

-- 35 L insratl

¢ - 3B \o-- 82

g -=- 7] -- 93

B -- 38 S L

' == 39 — == 95

[== 43 ~ .a 96

)} - 4 R

* e A2 1 -- 124

+ == 43 gL v

3 - 3 My == 176

TR | e == 153

. == A + -- 154

f == 47 + == 155

== 5 + == 156
-- 54 £ == 157

¢ == BB F == 158

= == Bl =y == 159

> == B2

Greek Letters

a == 128 g == 129 ¥ == 130
& -- 131 e -- 132 g -- 133
T o-- 13 & -- 135 1 == 136
K == 137 A == 138 p o-- 139
woo-— 140 £ -- 141 o == 142
7 == 143 poo== 144 a == 145
T -- l4é w o -- 147 $ -- l48
¥ == 145 wo== 150 w == 151
a -- 152

107

Appendix D

SP2A MACHINE LANGUAGE INTERFACE

This section is written for those who understand 2PBP machine language
and wish to interface assembly language programs with Poly 88 BASIC.
It will also be of help to those who wish to change the defaults for
certain features in Poly 88 BASIC. For both these purposes, an under-
standing of the Poly 88 front panel mode of operation, for examining
and modifying memory locations is assumed.

D.1 Default modes and flags
The following items are default values present in Poly 88 BASIC
version ARP at the (Hexadecimal) lecations shown:

Location Contents Description
Zppe 1A Character code that when detected, causes entry

to the Poly 88 front panel. The default as
shown is a control-Z. This byte may be changed
to another ASCII character code to change the
front panel entry code, or to 99 to disallow
entry to the front panel from BASIC.

2pa7 19 Interrupt character code for BASIC. [Default
is control=Y.

29pa 42 Default mode for writing cassette tapes. The
default it the charactar code "8," for hyte.
This may be changed to 5@ (ASCII "P") to make
the default mode Polyphase. Any other contents
of this location will result in a syntax or
other errar when the default format is used in a
tape command.

Zpps 3E This i5 the ASCII character used by BASIC as the
prompt. If this byte is changed to PP, BASIC
will not prompt the user at the line entry or
program continuatian Tevel.

2950=-E FF 49 Address 49FF is the end of BASIC.

Zpep-1 FF 4F Bddress 4FFF is the starting address used
in searching for the end of memory.

D.2 Changing memory 1imizs, installing assembly language routines

An example of the proper method for installing assembly language interfaces to
BASIC is given in the documentation for BPRINT, the printer driver for Poly B8
BASIC. The assembly language prograzm should be written to load at address

108

PolyMorphic Systems BASIC

4APP, past the end of BASIC. The program, in its imitialization section, should .
modify locations 2P3D-E, and 286Q-1 in BASIC, to set up memory limits. Locations
2psD-E should be set to point after the end of the assémbly language routine

and any of its resident data. The address stored in 295D-E will be used as the
beginning of BASIC data and program storage. If this address is above 4FFF,
location 2P6P-1 must be changed to one plus the contents of 2@50-E, the beginning
location used in scanning for the end of memory that BASIC will use. In this man-
ner, the assembly language routine modifies BASIC im such a way that it exists
immediately following BASIC, and before BASIC program and data storage.

0.3 CALL interface

The CALL functiom is used to invoke assembly language routine. The format is
efther CALL {addr,val} or CALL {addr) where both addr and val are expressions

that must evaluate to P<waddr<=65535 and @<=val, <=65535. The expression shown as
"addr" is the address of the subroutine to be called. If "val" is present, it is
passed to the subroutine in register pair HL. When the subroutine exits by
issuing a RET, or conditional, return instructicn, the value present in register
pair HL will be converted to an integer and passed to the BASIC program as the
value of the call.

0.4 Memory examination and modification --PEEK and POKE

NOTE: madification by use of the POKE statement of areas of memory containing
BASIC, BASIC programs or data, or the system core may result in anamalous program
behavior, possibly resulting in the loss of the program andfor its data.

The PEEK function takes the form PEEK addr, val where addr i3 an expression
evaluating to the range P<saddr<=65535 as a memary address, and returns the dnte-
ger contents of that memory locatien Using PEEK om areas of the address space

not populated with memory may give anomalous, possibly non-repetitive results.

The POKE statement takes the form POKE addr, val where zddr is an expression
evaluating to the riange P<=addr<=65535 for the memory address to modify, and .
fe=val<=Z35 for the & bit quantity to store at that address. As noted above,

caution should be exercised in the use of the POKE ctatement.

109

PolyMorphic Systems BASIC

0.5 - BPER TN and OUT

898p IN and OUT functions may be performed through BASIC using the INP function
and the OUT statement, respectively. The format of the INP function is INP (port),
where P<=port<=255 is the port address. INP{port) returns as an integer the 8 bit
status resulting from an IN instruction to the desired port. Note that INP(8)
through INP{31) are reserved for system use, and that INP of an undefined port may
give anomalous results. The format of the OUT statement is OUT port,val where
A<=zport<=255 is the 338 port address as in INP above, and val is the 8§ bit walue
Pe=val<=255 that is sent to the specified post. MNote that ports §-31 (decimal)
are reserved for system wse, and that fssuing an OUT to a systeh'cnntrn11ed

device or port may result in ancmalous bahaviour, possibly resulting in the loss
af the pragram andfor its data.

D.6 INP(P). INP{1), INP{2), and OUT @

. The calls to INP with port addresses P-2 return data regarding the type-zhead..
INP(P) returns the status of the type-ahead buffer; @ if the buffer is empty, and
¥ A if there is at least one character in the input buffer. INP(1) returns
the next character as an integer [ASCII) walue, without echoing it to the screen,
and INP{2) returns the next character as an integer and echoes the character
to the screen. The statement OQUT A, wal places the ASCII character with integer
value val into the input buffer. It should be noted that the attempt to place
characters inte the input buffer when it is full will be ignored. Printing a
contral=X character will flush the input type-ahead buffer.

0. 7 Re-entering BASIC from Front Panel Display

To reenter BASIC from the front panel display, type: SPJZEPA for “cald
start” (BASIC assumes there is no program in effect); type SPJZER3 for
"warm start" (BASIC assumes there is a program in the machine); and type
SPJ49CP to "warm start" from "B-print” {Printer Driver".] Then type

. carriage return and "G" to return to BASIC. The above operations set
the program counter Lo the specified addrass.

110

PolyMorphic Systems BASIC

Example:

enter: 188 REM THIS PROGRAM USES QUT 4 TO LIST AND SCRATCH
118 REM ITSELF....
128 REM ALSC DEMONSTRATES USE OF MULTILINE FUNCTIONS
138 REM AND DUMMY ARGUMENTS.
148 Z=PHI("LIST")+FHI{("SCR")
154 sTOP
168 REM PONCTION TO STUFF STRING INTO INPUT BUFFER
1780 REM FOLLOWED BY A CARRIAGE RETURN.
188 DEF PNI(SS)
199 FOR I=1 TO LEN{SS)\C=aSC(S$(I,I))N\OUT ﬂ CHYHEXT
208 OoUT @,13\RETURN @&
219 FNEND
>RUN

Stop in line 158

#HLIST

188 REM THIS PRCGRAM USES OUT € TO LIST AND SCRATCH
119 REM ITSELF....

128 REM ALSO DEMONSTRATES USE OF MULTILINE FUNCTIONS
13@ REM AND DUMMY ARGUMENTS.

148 Z=FNI("LIST"}+FNI("SCR")

1580 STOP

168 REM FUNCTION TO STUFF STRING INTO INPUT BUFFER
172 REM FOLLOWED BY A CARRIAGE RETUERN,

1B@ DEF FHI(33)

158 FOR I=1 TO LEN(S35)\C=ASC(S5(I,I))}\OUT B,C\NEXT
298 OUT 8,13\RETURN 4

219 FNEND

*>»E&CR

*LIST

e

3

111

PolyMorphic Systems BASIC

Appendix E: COMMANDS, FUNCTIQNS AND KEYWORDS RECOGNIZED BY BASIC.

Next to each entry are the page numbers that refer to the manual location
where information about the item may be found.

INP, 31, B5, 110

RMD, 53

112

AND, 11 LOAD, 77

CLEAR, 25 NEXT, 41

CON (continue), 23 NOT, 11

Control-W, 8 0N, 45

Control=X, 8 OrR, 11

Control-Y, 8. 23, 83 PLOT, 65

DATA, 29 PRINT, 32, 33

DIM (dimensian), 61, 63 READ, 29

DEF (define function), 58 REM (remark), 26

ELSE, 48 REN, 21

EXIT, 49 RESTORE, 30

FN (function name), 58 RETURM, 59, 59

FNEND {function end), 58 RUN, 22

FOR, 40 SAVE, 81

GOSUB, 59 SCR (scratch), 25

GOTO, £5 STEP, 41

IF, 47 sTOP, 27

INPUT, 28 TAB, 35

INPUTL, 28 THEN, 47

LET, 27 TO, 40

LIST, 19 VERIFY, 82

INTRINSIC FUNCTIONS, 52

ABS, 53 INT, 53 SGM, 53
ASC, 57 LEN, 586 5IM, 53
CHRS, 57 LoG, 52 SQRT, 52
cos, 52 ouT, 56, 110 STR3, 57
EXP, 52 PEEK, 56, 109 TIME, 55
FREE, 5B POKE, 5&,; 109 VAL, 57

FolyMorphic Systems

Arithmetic operators, 9
addition, 9
division, 9
exponentiation, 9
multiplication, 9
subtraction, 9

Arrays, 61

Array indexing, &1

Assembly progiram
interface, 108

Assignment statements, 27

Auto-execute, 81

Back-slash, 17

Blanks, 16

Branching, 17, 45

call, 108

Carriage return, 7

Character set, 105

CLEAR, 25

Commenting, 26

Constants, 12

Continue (CON), 23

Control commands, 19
CLEAR, £%
cow, 23
Control-Y, 8, 23, &3
LIST, 19
REN, 21
RUN, 22
S5CR, 25

BASIC

INDEX

113

Control commands summary, 25

Correction techniques, B

Cursor, 75

DATA, 29

fefult loading, &1

Default PRINT format, 33

Default FOR=-NEXT step wvalue, 41

Defining functions, 58

Deletion, 8

bimensioning (DIM}, 61, 63

Direct statements, 13

Double prompt, 24

E-Format, 37

ELSE, 48

Error messages, &b

EXIT, 49

Exponential natation, 12

expression, 13

F-Farmat, 37

Format characters, 36

Format errors, 38, 68

Format specifications, 37
E-Format, 37
F-Format, 37
I=Format, 27

Format strings, 35

EQR-NEXT loops, 38

FREE, 56

Free format, 33

GOSLE, 59

PolyMorphic Systems BASIC

GOTO, 45

I-Format, 37

IF-Then, 47

INP, 55, 110

P(P),INP(1), INP(2), 31, 110

INPUT, 28

INPUTL, 2B

Input prompt, 28

Intrinsic fumctions, 52
regular, 52
memory and SPAP system, 55
string, 56

LET, 27

Line length, 16

LIsT, 19

Loading BASIC, 7%

Loading programs, 76

Logical (Boolean) operators, 11
AND, 11
ROT, 11
OR, 11

Loops, 38

Loop variable, 39

Multi=-1ine user-defined
functions, 57

Multiple IF-THEN commands, 48

Hultiple statement line, 17

Nesting loops, 42

Null format string, 35

Null .PRINT, 32

114

ON-GOTO, 45
Operands, 1Z
Operators, 9
ouT, 56, 110
PEEK, 56, 109
PLOT, &5
POKE, 56, 109
PRINT, 32
abbreviation, 33
PRINT formatting, 33
Print 1ist, 33
Program display, 19
Program execution, &2
Program line numbers, 16
Program Tine addition, 16
Program 1ine deletion, 17
Program 1ine replacement, 17
Program statements, 26
DATA, 29
ELSE, 48
EXIT, 49
FOR-NEXT, .38
GOTO, 45
IF-THEH, 47
INPUT, 28
INPUTL, 28
LET, 27
ON-GOTO, 45
PRINT, 32
READ, 29

PolyMorphic Systems BASIC

REM, 25

RESTORE, 30

STOP, 27

praogram statements summary, 49
Prompt symbal, & '
Random number generator (RND), 53
READ, 29
Real time clock (TIME), 55
Relational operators, 10
Remark (REM), 25
Renumber (REM), 21
Resetting default PRINT format, 36
RESTORE, 30
RETURN

subroutine, 59

user-defined function, 59
RND, 53
Round-off precision, 12
RUN, 22
Saving programs, &0
Scientific notation, 12
Scratch (SCR), 25

115

STEP, 40
Step value, 40
sTOR, 27
String, 12, 62
string concatenatiom, . 63
String indexing, 5%
Subroutines, 59
subroutine errors, 60, 70
Subscripts, 63
Substrings, &3
summary of all commands,
functions and keywords in BASIC, 112
TAB, 35
TIME, 55
Type-ahead buffer, 110 .
Typing mistakes, B
User-defined functions, 57
VYariables, 13
numerical, 13
string, 12, 13
Verify, &2

Using the Poly 85 BASIC Printer Driver
Copy¥right Interactive Products Corporatian, 1977

INTRODUCTION

This manual describes the use and operation
of a driver for interfacing serial printers te Poly
88 BASIC.

section 1 provides instruction for the immed-
iate use of BPRINT.

Section 2 containg indepth information regar-
ding BPRINT use and installatian

A program listing for hooking BASIC to HyTypes
and DecWriters follows Section 2.

Using the Poly 88 BASIC Printer Driver
Copyright Interactive Products Corporation, 1977

Section 1 SUMMARY FOR IMMEDIATE USE OF BPRINT

Make certain the printer is correctly attached to the
printer interface, that it is "on" and not on "LOCAL",
[t must be ready fo on-1ine operatiaon.

1.1 Loading BPRINT

BPRINT must be used only with Poly 11X BASIC version

APP and Tater. Load BASIC (instructions are in your

BASIC manual)., Stop the cassette tape [BPRINT is on

the same side of the tape as BASIC). Hit reset button

on the front panel. Type B or P (depending upon the format
of your BASIC TAPE), type BPRINT, hit carriage return, and
restart the tape. After BPRINT has lnaded, BASIC

will return to the monitor screen. Be careful if ¥you

load BPRINT after BASIC has been running for a whila,
Loading BPRINT erases any BASIC programs that you

might have had Toaded in memory. You start " fresh" with
BASIC, as if you had just loaded it.

1.2 BASIC Commands for operating the Printer

To: Type:
Enable the printer FRINT CHRS({17)
Disable the printer PRINT CHR3(19)
Disable the keyboard PRINT CHR3({2p)
Enable the keyboard PRINT CHRS (18)
dote: Printer must be enabled hefore
key&nard cam be enablad,

Using the Poly 88 BASIC Printer Drive
Copyright Interactive Products Corporation,l1977

1.3 Modifying the Baud Rate Used by BPFRINT

BPRINT has been set up to work for printers operating

at a baud rate of 38} (HyType or DecWriter, for example).
This is the most common baud rate wsed by printers. If
your printer uses a different baud rate, a change must

- be made in the BPRINT program. This can easily be done,
gither from the front panel mode, or from BASIC, After
determining the baud rate used by vour printer, refer

to the enclosed table. Find the baud rate you need.

Look at its eguivalent in the Hexadecimal column. Use
this mumber to replace the old baud rate number, 16 hexa-
decimal.

Far instance, if you wish to change the baud rate from
3PP baud to 12PP baud, look up 1299 baud. ts eguiva-
lent hexadecimal number is 13. Therefore the hexidecimal
19 will replace the old baud rate.

A. Changing the Baud Rate from the Front Panel

Using the example above, we will change the baud rate
from 308 to 12pp.

1} Load BASIC and BPRINT

2) Type Control-Z to get to the frant panel.

3) Type L4A98 followed by a carriage return, to get to
memory location 4498 (whose contents set the
baud rate).

4) Type the number 19, followed by a space.

5) Type SPJ49CH, to get to the start address of
BASIC when hooked in with BPRINT.

) Hit a carriage veturn, aznd then tupe G. You
will now be back in BASIC,

Using the Poly 88 BASIC Printer Orive
Copyright Interactive Products Corporation, 1977

B. Changing the Baud Rate from BASIC.

Again, using the example above, we will change the baud
rate from 399 to 12PD.
1} Load BASIC and BPRINT.
2} After a BASIC prompt, type:
POKE 19096,25
3] You will now be rsady to continue on in BASIC.

The POKE function allows you to directly input a num-

ber into memory. As BASIC deals only with decimal num-
bers, the memary location 4A%8 (a hexidecimal number) i3
converted to its decimal representation, 19998, You must
then convert the hex number representing the baud rate to
4 decimal number {see enclosed table). The number 25 in
the example above is the decimal representation of the
hexidecimal nymber 19 used in the previous example. To
check this memory location you may use the BASIC function
PEEX {see your BASIC manual for an explanation of this
function).

1.4 Restarting BASIC

If you should need to restart BASIC (for instance, to
raturn from front panel mode), use the address 4%CP,
instead of the wswal BASIC start address of 29pp. if
BPRINT is to be used again. When in the front panel made,
restart BASIC by typing 3PJ49CH. Then hit a carriage
return and type G.

Using the Poly B8 Printer Drive
Copyright Interactive Products Corporation, 1977

BAUD RATE TABLE

Baud Rate Replacement Humbers
Hexadecimal

Decimal
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

11
1z
13
14
15
16
17
1a
19
1A
1B
1c
1D
1E
1F

Baud Rate

5P
75
119
134.5
150
2pp
]
app
1298
1898
249
3cPa
1300
720D
9609

Using the Poly B8 BASIC Printer Driver
Copyright Interactive Products Corportation, 18977

Section 2 THE POLY 38 BASIC PRINTER ODRIVER

Section 2 describes the use and operation of a driver
for interfacing serial printérs to Poly 88 BASIC. This
driver is applicable ONLY to Poly 88 BASIC versions A99
and later, The driver program, in conjunction with a
Poly 88 printer interface card, and Poly 88 BASIC,
provides the ability to print and 1ist an the serial
device, and als0o use the keyboard on that serial device.
The driver program i3 set up for 399 baud devices,

such as the HyType, or DecWriter, but may be changed

for use with 119 baud devices,

2.1 Instzlling the Printer Driver

To load the printer driver, BASIC must first be loaded.
When BASIC has started, and has printed its version mes-
sage, the printer driver may be loaded. Hit reset on the
front panel, and make sure the printer device is attached
to the Poly 88, and i: powered on. MHow load the driver,
by typing B or P, depending on the type of tape you have,
followed by BPRINT (the normal tape booting procedurel}.
This tape will auto-s$tart, and you will see the BASIC
herald one again. At this time, the driver is initial-
1zed, and you may load wour BASIC program., Note that after
performing its initialization, the printer driver "cold
starts” BASIC. This means that any progqram you had loaded
is erased. You will also notice that the number of free
bytes available has decreased about 500 bytes, this is the

space tTakenm up by the printer driver and the printer buffer. .

[f the message “"NHuts!" is displayed on the screen, rather
than BASIC restarting, you have tried to use the driver
with an earlier version of BASIC, or BASIC was not loaded.

he

Using the Poly BE BASIC Printer Driver
Copyright Interactive Products Corporation, 1977

BASIC must be loaded before loading the printer driver and
BASIC version ASP or later must be used because of the
"floating patch" - it dynamically hooks itself into BASIC.

2.2 Using the Printer (and its Keyboard, if Any)

The printer driver is “attached" to the character output
path in the system; it handles each character that is out-
put to the video screen. The functions of starting and
stopping printing, enabling and disabling the keyboard aon
the serial device, are all done by sending control codes
to the video screen through the printer driver. These
control c¢odes and their functions are:

Name Value Function performed
XON,.DCl,ctl=0 11H/17 Enable the printer
XOFF,DC3,ct1-R 134719 Disable the printer
TAPE,DC4,ctl=5 12H/18 Enable the keyboard
TAPE,DC4,ct1-T 144/ 29 Disable the keyboard

After an XON is sent to the screen, all characters sent to
the screen by BASIC (excluding graphics characters used

by PLOT, or characters placed on the screen through POKE
to modify memory)} will also be sent to the printer. Send-
ing XOFF sztops this process. Because the printer device
is much slower than the screepn, the characters that are

to be printed are first placed in a 256 byte buffer. This
buffering allows the screen to proceed at a-higher speed
until the buffer fills. This also means that you may send
the XOFF to the printer, and it may keep printing for

4 while because of the characters remaining in the Buffer.
Sending a DC2 to the screen enables the keyboard on the
serial device (if one exists). From that time, any keys
struck on the keyboard before a 0OC4 is sent to the screen,
will appear to the system just as if they were sent hy the

Using the Poly 88 BASIC Printer Oriver
Copyright Interactive Products Corporation, 1977

normal keyboard on the Poly 88 (NOTE: this INCLUDES con-
trol-Y AND control-Z}. Because of the type-ahead buffer-
ing done by BASIC, some characters may be present in the
buffer when the DC4 is sent. These characters may be
deleted either by typing PRINT CHRS(24). Control-X is
18H, or 24 in decimal.

2.3 Using Tapes

Onece the printer driver has been installed, a certain
amount of care must be used in loading and saving files
on cassettes. Because the serial printer interface and
the cassette interface run on the szame channel, only
ane may be operatiomal at a time. For this reason,
THE PRINTER AND THE PRINTER KEYBOARD MUST
BE_DISAELEU BEFORE USING CASSETTES IN BASIC.
THIS MAY BE DONE BY THE DIRECT BASIC STATEMENT
PRINT CHRS(19), CHRS(2D)
Failure to do this will result in a period of normal,
polite behavior, resulting in a sudden and indiscrete
stop when the printer buffer f111s5 up. If this happens
BASIC must be restarted 1in a special way to again initial-
ize the printer driver.

2.4 Restarting BASIC with the Printer Driver

If Basic becomes "wedged”, or must be restarted, it should
be restarted at address 49CP INSTEAD of 29PR if the printer
driver i5 to be used again. Restarting BASIC at 2099

or 2PP3 after the front panel RESET button has been uwsed
will NOT RECONNECT THE PRINTER DRIYER, Again, when the
system 1s restarted at 435CP, BASIC is COLD STARTED, CLEAR -
ING THE PROGRAM.

Using the Poly 83 BASIC Printer Driver
Copyright Interactive Products Cerporation, 1977

The printer interface is composed of three disztinet
sections:

1)linitialization

Z)interrupting processing

3)character interception.
The initialization section, starting with the label
START in the accompanying assembly listing, verifies
that the proper version of BASIC is leaded, modifies
the starting memory 1imit it BASIC, and attaches itsalf to
wormhole 1, the character output wormhole. [n this manner,
all calls to that wormhole will be vectored through the
antry point labeled COUT. As characters are sent to worm-
hole 1, they are examined by COUT. 1If the character is
among XONW, XOFF, DC2, or DG4, we transfer to the special
processing routine that handles that character. If we
see a4 KON, we go to CXON to set up the interrupt handler
and the buffer pointers. TISR is set up as the inter-
FUpT processing routine to be called when we get am inter-
rupt from the B251 USART. The output flzg, OFLG is set
non-zZero to indicate that characters are to be buffered.
The ring buffer insertion and removal pointers (TPP and
TGP for put and Get) are set, and the USART is started
after calling the monitor SETUP routine to define the
USART mode. MNote that this processing i1t done with the
interrupts OISABLED. This is because the pointers TPP
and P are "interrupt alterable”, that is, they are altered
at the interrupt Tevel. If we did not disable the interrupts
at the start of CXON, once we set the address of our fnter-
rupt routine, TISR intoa TINT, the USART could interrupt us,
with TPF and TGP having undefined contents (with unde-
Fined results!). If the character was not a special one,
we test the flag OFLE to see if the printer is enabled.

Using the Poly 88 BASIC Printer Driver
Copyright Interactive Products Corporation, 1977

If the flag s zere, we are not enabled, and we go to

CEXIT to return through the normal wormhole processing.

If we are buffering characters for the printer, (0OFLG
non-zero), we transfer to CCR if the character s a car-
riage return, and to POKE if it i3 not,({both actions buffer
the character) and then we exit.

Because the video driver in ROM performs the equivalent
“line feed" action when given a carriage return, we

must process carriage returns specially. CCR outputs
the carriage return, and a number of padding characters
(for DecWriter delay and such), and then outputs a line
feed to the buffer., POKE is called to place characters
inty the ring buffer. We disable interrupts, as we are
going to use TPP and TGP, which ¢an be altered by TISR,
which runs at the interrupt level. If there is room in
the buffer, we place the character in it, and update the
pointer (TPP). If there 15 no room, we go to HANG to
enable interrupts and wait. We will wait in this mannar
until we havs room in the buffer for the character.

This is the reason the fromt panel light flashes on and off
when driving the printer. The buffer fil1ls wp, and we
start waiting for an empty slot to put the character in.
We enter TISR as a result of an interrupt from the 8251
USART. If it is an interrupt caused by a keyboard char-
acter, we test the flag IFLG, and if it is non-zero, we
get the character froem the USART, and jump into BASIC

to process it. If IFLG is zero, we "drop it on the floor".
When we detect that the transmitter buffer is empty

(the pointer TTP and TGP are equal), we will "give it

a4 fish" - feed it a DEL code. OQtherwise, we take the
next character from the buffer, update the painters,

and send it to the USART.(The ring is on buffer on a 25§
byte boundary, to simplify the ceding.) TPP it used as

S1pe

Using the Foly 88 BASIC Printer Driver
Copyright Interactive Froducts Corporation, 1477

the "put" pointer, for inserting characters. TCP

is used as the "get" pointer. When thesze pointers are
equal, the buffer 5 empty., IF they are equal after one has
been decremented (and checked for wrap-around), then

the buffer is full. This need only be checked by the insar-
tion routine.

2.6 3special Froblems

When driving a terminal such as the HyType, which does not
require padding character following the carriage return,

the routine PAD may be eliminated. One way of accom-
plishing this is to modify the first byte of PAD from a

3E to a C9;: ¢hanging the MVl into & RET instruction. Making
this change eliminates the padding characters from being
placed in the buffer. If other than a 3PP baud device

is used, the bytes following the ¢all to SETUP [location
4A98 in the 1isting) must be changed to denote the now

speed and parity format for the davice,

Special thanks go to R. Hustvedt for explaining the tech-
niques used in dynmamic patches.

-11-

-Printer driver for Poly BB BASIC version Ad9 14 digit precision
"”':'F'h’l'l?ht Interactive Preducts Corporation, 1977

age 41

2086
204E
2061
206F

#2aD
BG4
acClé
fc24

a44an
a30a
ad7F
8911
2913
del2
d8l4
4AC02
4003
4DB8

sACH
4ACE

4nC3
4ACE
4aC6
4ac9
4ACA

4ACD
1ADA

C3Z44B

DBadl
1F
DADE4dA
1F
D26s8d

3a2d48
BY

SF %k %k %W UF RF T3

m EWE = u§ mE

Driver Eor heooking BASIC to Hytypes and Decwriters.
For use with BASIC version ABE and lateCe..s..

Device is to be loaded AFTER starting BASIC. Hooks int
interrupts, wormholes, and BASIC. Send it an XOMN, and
that time until you send it an XOFF, all characters
sent to the screen thru wormhole 1 will appear on the
Send it a DC2 (TAPE), and any keystrokes on the thing'
keyboard will be plotzed into the keyboard buffer. Thi
stopped by sending a DC4 (not TAPE) to the screen.

BGO EQU Z000H ; stark BASIC
BTXT EQu ZB8EH ; version text in BASIC
BMLL EQU 2861H : lower memory limit in BASIC
BEE EQu Z86FH ; BASIC Kevboard interrupt routl
SETUP EQU 2ADH 5 usart setup code in rom
IORET EQU G4 : Interrupt rekurn poink.
TINT EQU iel N | ; USART interrupt vector
WH1 EQD BC24H + warmhaole 1 for cutput
i
CR EQU EDH ; carriage return
LF EQU BAHE ;7 line feed
JUNE EQU TFH : junk padding code sent
KON EQU 11H ; printer on
KOFF EQU 131 ; printer off code
DCZ EQU 128 : keyboard on
DC4 EQJ 148 ; keyboard ¢ff code
CODE EQU 4ACIH : above BASIC
BUF EQU 4Ca994H
MEMD EQO BUF+256 : 254 bvte buffer
L}
QRG CODE
JMP START : startup code=check and hook in
H
v Inteccupt service routine. We just got an interrupt
; from the stinking 8251,
TISR: IN 1 ; what does the thing want
RAR
JC WRT ; jmpswants a character.
RAR
JHC IORET : jmpsSijust harassing us.

B wE Sa Sd

USART has a character. If IFLG is nonzero, foist off o
BASIC's kevboard interrupt logic, otherwiszse drop it.

LA IFLG
ORA !

Printer driwver for Poly B8 BASIC version ABP 14 digit precision
Copyright Interactive Products Corporatioen, 1977

Fage 04
dAD1 CADS4A JZ CROP ; Jjmpsdrop it on the floor.
4AD4 DBAO I a
abDe CIEF2D JHP BEB ; leap off into BASIC!
4AD3 DEOGD DROP: IN) ;7 get kbhe character
4ADE C364029 JMP IORET ; and split.
; 2251 wants a character to send out,
4ADE ZA1E4B i";‘RT: LHLD TGF
4AE1l 3ALCA4E LDA b
4AE4 BD CMP L ; anvthing in buffer?
4AE5 CAFPR4R J2 FISH : JmpSnope, give it a fish.
4AER TE MOV AM : get chr from huffer
4AE9 2D nCR L ¢ dink pninter
JAEA C2EE4:a JHZ WET1 ; impsSno wrap
4AED 2D DCR L : reset ptr.
4AEE Z221E4B WRT1: SELD TGP : save pointer
AAFL D3QA QuT d 1 shove chr sut the door
JAF3 C364249 JHMP IORET : and split.
; It wants a chr; we don't have one- give it a fish.
4AF6 3ETF FISH: MVI B, JUNK
4AF8 CIEE4A JMEP WRT1 : Take that!
¥
7 Text we search for
*
JAFE S86F6CTY TEXAT: DB "Poly 88 BASIC(l4) wversion A'
4AFF 283838238
dBB3 42415349
4B87 43283134
JBEE 23207665
4BBF T27369&F
4B13 EE2841
; Gripe bext
48186 4ETS7473 QUTS: DE "Muts!', B
q2la 21060
¢ Various flags and such,
4B1C TPRP: DS 2 ; buffer put pointer
4B1E TGP oS 2 : buffer get pointer
4828 IFLG:] 1 ; input process flag
4821 OFLG: bs 1 ; output process flag
4822 WORM : DS 2 ; old wormhele contents
; Startup code. Check for the proper version of BASIC.
. 4624 F3 START: DI
4825 Z13E28 LXI H,BTLT
dB28 11FR4A LXI D, TEXT
4828 EE17 HMVI c,23 ¢ peinters and length to check
482D 1A CL: LOAX o

qBZE EBE CHp M 1 iz this the right version?

Frinter driver for Poly 88 BASIC version A9d 14 digit precision
Copyright Interactive Products Corporation, 1977

Page 93

4B2F
4Bz
4833
4834
4835

4B3B
4838

48 3E
483F
4842

4845
1848
4248
4B4E

(@ s

4854
4B57
4858
4859
4B5C
4B3F
4860

4863
4864
4865

4B&6
4B&7
4888
486B
486C
4BEF
. 4B78
4873
4874
4877
4878

C25448
23
13
ap
C22D45

21884D
226120

AF
122848
322148

2A254C
222248
21D34B
22250C

c39d2a@

211648
7B
BY
CAST4E
CD2:8C
23
Cis74B

FE
76
Fl

FS
F3
2AlC4B
7
JAlE4B
2D
C2T7448
2D
IAlE4B
BD
caBl4B

JHZ NOPE ; Jmpfnope, I gquit.
InNx H

I[nx D

DCR C

JHZ CL

Now diddle memory limits in BASIC

“E Wi e

LXT H,MEND
SHLD BMLL 1 poke!

; Clear the flags for input and sutput

XRA A
5TA IFPLG
5TA OF LG

i 5teal the wormhole for printing on the screen

LAELD WH1+1
SHLD WORM i old contents
LXI H,COUT ; out thing
SHLD WHL+1 ¢ hook it up.
; Start yup BASIC
y JME BGO ; scratch ofE,...

! Gripe = this is not the right version of BASIC

HNOPE: LXT H,HUTS
Lt Hov ALM
DRA A
J2 ML ; spin when thru!
CALL WH1
INX H
JHMP WL

POKE puts the thing inm A in the buffer. Note that if t
buffer is full, it will hang you out to dry.

WF “f wi

HANG : EI
HLT ; wait for an interrupt already.
POP PEW ; get chr back,.
FOEE: BUSH PSW : save this.
DI ; don't bug me, I'm busy.
LELD TEP
MOV M A ; poke into buffer
LDA TGP
DCR L
JNZ POKEL
DCR L
POKEL: LDa TGP : see 1f buffer is full.
CMP L
Jz HANG : JmpSyup, must wait.

Printer drivecr for Poly 88 BASIC version A#2 14 digit precision
Copyright Interactive Products Corporation, 1977

Fage Q4

4878
4B7E
487F
4688

4881
4883
4B&5
4B28
4BEY
488C

4B8D
4BE8E
4BEF
48982
4893
4896
4R399
§BR2C
4BAD
4Bal
4B8A2
4843
4BAR
4BAD
SEAC
SEAE

42848
4B81
4BB4
4B83
4BGG

43B7
4888
4BEE

4EBE
SEBF
4BC2

4BCS

221C4B
Fl
FB
C3a

JETF
dofn
CDOG4B
85
C2854B
c9

F3

D5

C5
21C34A
22168C
322148
CDADA 2
16AA4EDA
g4d

cl

Dl
21FF4C
221C4E
221E4B
3827
D3|l

Fl
2A224B
E3
Fi
c9

AF
322148
C3BE84B

AF
322848
CIBQ4E

Cohe4E

SHLD TPP ; If not, set pointer
FOP PSW ; get thing hck
EI i let Ehe world intrude,
RET ; and split.
i PAD sends cut 18 JUNE characters.
PAD: HVI B JUNE
HVI 8,18
PADL: CALL FORKE
DCR B
JHE *ADL
RET

CHXON handles XOW to start the printer.

CHOM - DI
PUSH D
FPUSH B
LXI H,TI5E
SHLD TINT ; make zure we have interrupts.
STA QFLG ; set flag non-zero, disable
CALL SETDPF i set up USART
oe LoE QARH, 498 . 9D2AH, B
POP B
POP D
LXI H,BUF+255
SHLD TEE
SHLD TGF ;7 set up buffer pointers
MWL A,27H
ouT 1 : start USART running
; CEXIT is the central exit logic
éEKIT: HOF PEY
LHLD WORM
ATHL
EI
RET
;s CXOFF handles XOFF sent ko us,
CXOFF: XBRh A
STA QOFLG
JHME CEXIT
7 CDC"2 is for DC2, ke start kevboard up.
CoC4: XRA A ; entry to turn off Xeyboard
CDC2: STA IFLG :
JMP CEXIT

;i CCR processes a carriage return,

CCR: CALL

FOKE

frinter driver for Poly 38 RASIC version APQ 14 digit precision
Copyright Interactive Products Corporation, 1977

Page .83
4BC3 Cpal4B CALL FAD ; cr and nuff padding
§8CE 3EBA VI A, LE
4BCD CDEB4B CALL POKE ; and a line Eeed.
4BD8 C3IBO4B JHUP CEXIT
r
; COUT is the entry point for chr output.
H HOTE! we can't leave anvything changed!
4303 ES CoOT: PUSH H
4BD4 75 PUSH PSW
4BDS FE11 CPI XOu
4BD7 CABD4E JZ CXOM
sB0A FEL3 CPI KOFF
cBOC CABV4D JZ CHOEFF
4BDF FELZ CPI DC2
4BELl CABF4B JZ coCz2
48E4 FEl4 CPI DCd
4BEH CABE4B ' JZ CDC4
4BE9 3aZl4B LDA OFLG
4BEC BT ORA& A i do we or dont we?
4BED CABA4B Jz CEXIT : jmpswe don't.
4BFE Fl BOpP BSW
4BFl F5 POSH esW
JBF2 FEOD [CR
48F4 CACS4B Jz CCR ; imp/go do CR if needed.
48F7 CD6L4B CALL POKE ; jmp/just buffer
: 4BFA C3BH4B JHP CEXIT i If not special, buffer and spl
; That's all, folks!
gaEa END

